Skip to main content
Log in

Modeling Mode and Route Similarities in Network Equilibrium Problem with Go-Green Modes

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Environmental sustainability is a common requirement on the development of various real-world systems, especially on road transportation systems. Motorized vehicles generate a large amount of harmful emissions, which have adverse effects to the environment and human health. Environmental sustainability requires more promotions of ‘go-green’ transportation modes such as public transit and bicycle to realize the increasing travel demands while keeping the environmental expenses low. In this paper, we make use of recent advances in discrete choice modeling to develop equivalent mathematical programming formulations for the combined modal split and traffic assignment (CMSTA) problem that explicitly considers mode and route similarities under congested networks. Specifically, a nested logit model is adopted to model the modal split problem by accounting for mode similarity among the available modes, and a cross-nested logit model is used to account for route overlapping in the traffic assignment problem. This new CMSTA model has the potential to enhance the behavioral modeling of travelers’ mode shift between private motorized mode and ‘go-green’ modes as well as their mode-specific route choices, and to assist in quantitatively evaluating the effectiveness of different ‘go-green’ promotion policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdulaal M, LeBlanc LJ (1979) Methods for combining modal split and equilibrium assignment models. Transp Sci 13(4):292–14

    Article  Google Scholar 

  • Bekhor S, Prashker JN (1999) Formulations of extended logit stochastic user equilibrium assignments. Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel, 351–372

  • Bekhor S, Toledo T, Reznikova L (2008) A path-based algorithm for the cross-nested logit stochastic user equilibrium. J Comput Aided Civ Infrastruct Eng 24(1):15–25

    Article  Google Scholar 

  • Ben-Akiva M, Lerman SR (1985) Discrete choice analysis. MIT Press, Cambridge

    Google Scholar 

  • Boyce D, Bar-Gera H (2004) Multiclass combined models for urban travel forecasting. Netw Spat Econ 4(1):115–124

    Article  Google Scholar 

  • Boyce D (2007) Forecasting travel on congested urban transportation networks: review and prospects for network equilibrium models. Netw Spat Econ 7(2):99–128

    Article  Google Scholar 

  • Briceño L, Cominetti R, Cortés C, Martínez FJ (2008) An integrated behavioral model of land-use and transport system: an extended network equilibrium approach. Netw Spat Econ 8(2–3):201–224

    Article  Google Scholar 

  • Button K (1990) Environmental externalities and transport policy. Oxford Rev Econ Policy 6(2):61–75

    Article  Google Scholar 

  • Cacciola RR, Sarva M, Polosa R (2002) Adverse respiratory effects and allergic susceptibility in relation to particulate air pollution: flirting with disaster. Allergy 57:281–286

    Article  Google Scholar 

  • Caliper Corporation (2004) TransCAD demand modeling manuals. Caliper Corporation, Massachusetts

    Google Scholar 

  • Cappiello A (2002) Modelling traffic flow emissions. MSc Thesis, Massachusetts Institute of Technology, Cambridge

  • Chen A, Kasikitwiwat P (2011) Modeling network capacity flexibility of transportation networks. Transp Res A 45(2):105–117

    Google Scholar 

  • Chen A, Kasikitwiwat P, Yang C (2013) Alternate capacity reliability measures for transportation networks. J Adv Transp 47(1):79–104

    Article  Google Scholar 

  • Chen A, Lee D-H, Jayakrishnan R (2002) Computational study of state-of-the-art path-based traffic assignment algorithms. Math Comput Simul 59(6):509–518

    Article  Google Scholar 

  • Chen A, Lo HK, Yang H (2001) A self-adaptive projection and contraction algorithm for the traffic equilibrium problem with path-specific costs. Eur J Oper Res 135(1):27–41

    Article  Google Scholar 

  • Chen A, Oh J, Park D, Recker W (2010) Solving the bicriteria traffic equilibrium problem with variable demand and nonlinear path costs. Appl Math Comput 217(7):3020–3031

    Google Scholar 

  • Chen A, Yang C, Kongsomsaksakul S, Lee M (2007) Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Netw Spat Econ 7(3):241–256

    Article  Google Scholar 

  • Chen A, Zhou Z, Ryu S (2011) Modeling physical and environmental side constraints in traffic equilibrium problem. Int J Sustain Transp 5(3):172–197

    Article  Google Scholar 

  • Chen A, Zhou Z, Xu X (2012) A self-adaptive gradient projection algorithm for the nonadditive traffic equilibrium problem. Comp Oper Res 39(2):127–138

    Article  Google Scholar 

  • De Grange L, Fernández E, de Cea J, Irrazábal M (2010) Combined model calibration and spatial aggregation. Netw Spat Econ 10(4):551–578

    Article  Google Scholar 

  • Dissanayake D, Morikawa T (2005) Household travel behavior in developing countries: nested logit model of vehicle ownership, mode choice and trip chaining. Transp Res Rec 1805:45–52

    Article  Google Scholar 

  • Fernandez E, Cea JD, Florian M, Cabrera E (1994) Network equilibrium models with combined modes. Transp Sci 28(3):182–192

    Article  Google Scholar 

  • Florian M, Nguyen S (1978) A combined trip distribution, modal split and trip assignment model. Transp Res 12(4):241–246

    Article  Google Scholar 

  • Florian M (1977) A traffic equilibrium model of travel by car and public transit modes. Transp Sci 11(2):166–179

    Article  Google Scholar 

  • García R, Marín A (2005) Network equilibrium models with combined modes: models and solution algorithms. Transp Res B 39(3):223–254

    Article  Google Scholar 

  • Hasan MK, Dashti HM (2007) A multiclass simultaneous transportation equilibrium model. Netw Spat Econ 7(3):197–211

    Article  Google Scholar 

  • Kyoto Protocol to the United Nations Framework Convention on Climate Change (1997) Available at http://unfccc.int/resource/docs/convkp/kpeng.html. Accessed 5 July 2012

  • Liu HX, He X, He B (2009) Method of successive weighted averages (MSWA) and self-regulated averaging schemes for solving stochastic user equilibrium problem. Netw Spat Econ 9(4):485–503

    Article  Google Scholar 

  • Lo HK, Chen A (2000) Traffic equilibrium problem with route-specific costs: formulation and algorithms. Transp Res B 34(6):493–513

    Article  Google Scholar 

  • Maher M (1992) SAM—a stochastic assignment model. In: Griffiths JD (ed) Mathematics in transport planning and control. Oxford University Press, Oxford

    Google Scholar 

  • Marzano V, Papola A (2008) On the covariance structure of the cross-nested logit model. Transp Res B 42(2):83–98

    Article  Google Scholar 

  • Meng Q, Liu Z (2012) Impact analysis of cordon-based congestion pricing on mode-split for a bimodal transportation network. Transp Res C 21(1):134–147

    Article  Google Scholar 

  • Nielsen OA, Daly A, Frederiksen RD (2002) A stochastic route choice model for car travellers in the Copenhagen region. Netw Spat Econ 2(4):327–346

    Article  Google Scholar 

  • Oppenheim N (1995) Urban travel demand modeling. John Wiley and Sons Inc., New York

    Google Scholar 

  • Rosa A, Maher MJ (2002) Algorithms for solving the probit path-based stochastic user equilibrium traffic assignment problem with one or more user classes. Proceedings of the 15th International Symposium on Transportation and Traffic Theory, Australia, 371–392

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Sheffi Y, Powell WB (1982) An algorithm for the equilibrium assignment problem with random link times. Networks 12(2):191–207

    Article  Google Scholar 

  • Siefel JD, de Cea J, Fernandez JE, Rodriguez RE, Boyce D (2006) Comparisons of urban travel forecasts prepared with the sequential procedure and a combined model. Netw Spat Econ 6(2):135–148

    Article  Google Scholar 

  • Szeto WY, Jaber X, Wong SC (2012) Road network equilibrium approaches to environmental sustainability. Transp Rev 32(4):491–518

    Article  Google Scholar 

  • The Economist (1996) Living with the car, June 22, 3–18

  • The Economist (1997) Living with the car, December 26, 21–23

  • Thobani M (1984) A nested logit model of travel mode to work and auto ownership. J Urban Econ 15(3):287–301

    Article  Google Scholar 

  • Train K (1980) A structured logit model of auto ownership and mode choice. Rev Econ Stud 47(2):357–370

    Article  Google Scholar 

  • Uchida K, Sumalee A, Watling D, Connors R (2007) A study on network design problems for multi-modal networks by probit-based stochastic user equilibrium. Netw Spat Econ 7(3):213–240

    Article  Google Scholar 

  • Vovsha P, Bekhor S (1998) The link-nested logit model of route choice: overcoming the route overlapping problem. Transp Res Rec 1645:133–142

    Article  Google Scholar 

  • Wallace CE, Courage KG, Hadi MA, Gan AG (1998) TRANSYT-7F user’s guide. University of Florida, Gainesville

    Google Scholar 

  • Wu ZX, Lam WHK (2003) Combined modal split and stochastic assignment model for congested networks with motorized and nonmotorized transport modes. Transp Res Rec 1831:57–64

    Article  Google Scholar 

  • Yang H, Huang HJ (2005) Mathematical and economic theory of road pricing. Elsevier, Amsterdam

    Google Scholar 

  • Zhou Z, Chen A, Wong SC (2009) Alternative formulations of a combined trip generation, trip distribution, modal split, and traffic assignment model. Eur J Oper Res 198(1):129–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Chen.

Appendix

Appendix

Proof of Proposition 1

The Lagrangian of the minimization problem with respect to (w.r.t.) the equality constraints can be formulated as:

$$ L=Z+{\displaystyle \sum_{ij\in IJ}{\lambda}_{ij}}\left({q}_{ij}-{\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}\right), $$
(24)

where λ ij is the dual variable associated with the flow conservation constraint in Eq. (14).

  1. (1)

    Given that the Lagrangian L has to be minimized w.r.t. positive route flows, the following conditions have to hold w.r.t. the route-flow variables:

    $$ \frac{\partial L}{\partial {f}_{er}^{ij}}=0\kern0.5em \Rightarrow \kern0.5em {g}_{er}^{ij}+\frac{\mu }{\theta } \ln \frac{f_{er}^{ij}}{{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu }}}+\frac{1-\mu }{\theta } \ln {\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}-{\lambda}_{ij}=0. $$
    (25)

    Rearranging Eq. (25) gives

    $$ {f}_{er}^{ij}{\left({\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}\right)}^{\frac{1-{\mu}_{ij}}{\mu_{ij}}}={\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(\frac{\theta_{ij}}{\mu_{ij}}{\lambda}_{ij}-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right). $$
    (26)

    Summing all r gives

    $$ {\left({\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}\right)}^{\frac{1}{\mu_{ij}}}= \exp \left(\frac{\theta_{ij}}{\mu_{ij}}{\lambda}_{ij}\right){\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}. $$
    (27)
    $$ {\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}= \exp \left({\theta}_{ij}{\lambda}_{ij}\right){\left({\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}\right)}^{\mu_{ij}}. $$
    (28)

    Then, summing all e gives

    $$ {\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}={q}_{ij}= \exp \left({\theta}_{ij}{\lambda}_{ij}\right){\displaystyle \sum_{e\in {E}_{ij}}{\left({\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}\right)}^{\mu_{ij}}}. $$
    (29)

    Dividing Eq. (28) by Eq. (29) gives the marginal probability of choosing nest e:

    $$ \frac{{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}{q_{ij}}={P}_e^{ij}=\frac{{\left({\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}\right)}^{\mu_{ij}}}{{\displaystyle \sum_{e\in {E}_{ij}}{\left({\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}\right)}^{\mu_{ij}}}}. $$
    (30)

    Dividing Eq. (26) by Eq. (27) gives the conditional probability:

    $$ \frac{f_{er}^{ij}}{{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}={P}_{r\Big|e}^{ij}=\frac{{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}{{\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}}. $$
    (31)

    Hence, these marginal and conditional probabilities correspond to the CNL route choice probability.

  2. (2)

    Now we consider the O-D demand variables:

    $$ \frac{\partial L}{\partial {q}_{ij}}=0\kern0.5em \Rightarrow \kern0.5em -\frac{1}{\theta_{ij}} \ln {q}_{ij}-{D}_{ij}^{-1}\left({q}_{ij}\right)+{\lambda}_{ij}=0. $$
    (32)

    From Eq. (29), we have

    $$ {\lambda}_{ij}=\frac{1}{\theta_{ij}} \ln {q}_{ij}-\frac{1}{\theta_{ij}} \ln {\displaystyle \sum_{e\in {E}_{ij}}{\left({\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}\right)}^{\mu_{ij}}}. $$
    (33)

    Let w ij be the CNL expected perceived travel time (EPT) of O-D pair ij:

    $$ {w}^{ij}=-\frac{1}{\theta_{ij}} \ln {\displaystyle \sum_{e\in {E}_{ij}}{\left({\displaystyle \sum_{r\in {R}_{ij}}{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}} \exp \left(-\frac{\theta_{ij}}{\mu_{ij}}{g}_{er}^{ij}\right)}\right)}^{\mu_{ij}}}. $$
    (34)

    Then, Eq. (32) can be restated as

    $$ -\frac{1}{\theta_{ij}} \ln {q}_{ij}-{D}_{ij}^{-1}\left({q}_{ij}\right)+\frac{1}{\theta_{ij}} \ln {q}_{ij}+{w}^{ij}=0. $$
    (35)

    Finally, the O-D demand is related to the elastic demand function as

    $$ {q}_{ij}={D}_{ij}\left({w}^{ij}\right), $$
    (36)

    where the elastic demand is a function of the EPT received from the route choice following the CNL model. This completes the proof. □

Proof of Proposition 2

It is sufficient to prove that objective function Eq. (13) is strictly convex and that the feasible region is convex. The convexity of the feasible region is assured by the linear equality constraints in Eq. (14). The nonnegative constraints in Eq. (15) do not alter this characteristic. By substituting Eq. (14) into the objective function, we have

$$ \begin{array}{c}\hfill \min Z={Z}_1+{Z}_2+{Z}_3+{Z}_4+{Z}_5\hfill \\ {}\hfill ={\displaystyle \sum_{a\in A}{\displaystyle \underset{0}{\overset{v_a}{\int }}{h}_a\left(\omega \right) d\omega}}+{\displaystyle \sum_{ij\in IJ}{\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}\frac{\mu_{ij}}{\theta_{ij}}{f}_{er}^{ij}\left( \ln \frac{f_{er}^{ij}}{{\left({\alpha}_{ij er}\right)}^{\frac{1}{\mu_{ij}}}}-1\right)}}}\hfill \\ {}\hfill +{\displaystyle \sum_{ij\in IJ}{\displaystyle \sum_{e\in {E}_{ij}}\frac{1-{\mu}_{ij}}{\theta_{ij}}\left({\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}\right)}\left( \ln \left({\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}\right)-1\right)}-{\displaystyle \sum_{ij\in IJ}\frac{1}{\theta_{ij}}\left({\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}\right)\left( \ln \left({\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}\right)-1\right)}\hfill \\ {}\hfill -{\displaystyle \sum_{ij\in IJ}{\displaystyle \underset{0}{\overset{{\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}}{\int }}{D}_{ij}^{-1}\left(\omega \right) d\omega}}.\hfill \end{array} $$
(37)

The Hessian matrix of Z 1 + Z 2 + Z 3 w.r.t. the route flow variables can be expressed as

$$ \frac{\partial^2\left({Z}_1+{Z}_2+{Z}_3\right)}{\partial {f}_{er}^{ij}\partial {f}_{lk}^{ij}}=\left\{\begin{array}{ll}\frac{d{h}_a}{d{v}_a}{\delta}_{ra}^{ij}+\frac{\mu_{ij}}{\theta_{ij}{f}_{er}^{ij}}+\frac{1-{\mu}_{ij}}{\theta_{ij}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}>0\hfill &; e=l,\kern0.5em r=k\hfill \\ {}0\hfill &; \kern0.5em otherwise\hfill \end{array}\right., $$
(38)

which implies the positive definite matrix from Assumptions 1 and 2. The Hessian matrix of Z 4 is \( -\frac{1}{\theta_{ij}}\frac{\partial^2}{\partial {f}_{er}^{ij}{f}_{lk}^{ij}}{\displaystyle \sum_{j\in IJ}\left({\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}\right)\left( \ln \left({\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}\right)-1\right)} \) which is positive semi-definite since all elements of the block matrix w.r.t. O-D pair ij are equal to \( -\frac{1}{\theta_{ij}{\displaystyle \sum_{e\in {E}_{ij}}{\displaystyle \sum_{r\in {R}_{ij}}{f}_{er}^{ij}}}} \). Finally, from Assumption 2, the Hessian matrix of Z 5 is positive semi-definite. Thus, the Hessian matrix of Z is positive definite. The CNL-ED has a unique solution w.r.t. to the route flow variables and hence the O-D demand variables. This completes the proof. □

Proof of Proposition 3

The Lagrangian of the equivalent minimization problem w.r.t. the equality constraints can be formulated as:

$$ L=Z+{\displaystyle \sum_{ij\in IJ}{\displaystyle \sum_{u\in {U}_{ij}}{\displaystyle \sum_{m\in {M}_{ij u}}{\phi}_{um}^{ij}\left({q}_{um}^{ij}-{\displaystyle \sum_{e\in {E}_{ij u m}}{\displaystyle \sum_{r\in {R}_{ij u m e}}{f}_{um er}^{ij}}}\right)+{\displaystyle \sum_{ij\in IJ}{\displaystyle \sum_{u\in {U}_{ij}}{\lambda}_{ij}\left({q}_{ij}-{\displaystyle \sum_{u\in {U}_{ij}}{\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}}\right)}}}}}, $$
(39)

where ϕ um ij and λ ij are respectively the dual variables associated with the conservation constraints in Eqs. (20) and (21).

  1. (1)

    Given that the Lagrangian L has to be minimized w.r.t. positive route flows, the following conditions have to hold w.r.t. the route-flow variables:

    $$ \frac{\partial L}{\partial {f}_{um er}^{ij}}=0\kern0.5em \Rightarrow \kern0.5em {g}_{um er}^{ij}+\frac{\mu_{ij um}}{\theta_{ij um}} \ln \frac{f_{um er}^{ij}}{{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}}}+\frac{1-{\mu}_{ij um}}{\theta_{ij um}} \ln {\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um er}^{ij}}-{\phi}_{um}^{ij}=0. $$
    (40)

    Rearranging Eq. (40) gives

    $$ {f}_{um er}^{ij}{\left({\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um er}^{ij}}\right)}^{\frac{1-{\mu}_{ij um}}{\mu_{ij um}}}={\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(\frac{\theta_{ij um}}{\mu_{ij um}}{\phi}_{um}^{ij}-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right). $$
    (41)

    Summing all r gives

    $$ {\left({\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um er}^{ij}}\right)}^{\frac{1}{\mu_{ij um}}}= \exp \left(\frac{\theta_{ij um}}{\mu_{ij um}}{\phi}_{um}^{ij}\right){\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right)}. $$
    (42)
    $$ {\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um er}^{ij}}= \exp \left({\theta}_{ij um}{\phi}_{um}^{ij}\right){\left({\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right)}\right)}^{\mu_{ij um}}. $$
    (43)

    Then, summing all e gives

    $$ {\displaystyle \sum_{e\in {E}_{ij um}}{\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um er}^{ij}}}={q}_{um}^{ij}= \exp \left({\theta}_{ij um}{\phi}_{um}^{ij}\right){\displaystyle \sum_{e\in {E}_{ij um}}{\left({\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right)}\right)}^{\mu_{ij um}}}. $$
    (44)

    Dividing Eq. (43) by Eq. (44) gives the marginal probability of choosing nest e:

    $$ \frac{{\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um e r}^{ij}}}{q_{um}^{ij}}={P}_{um e}^{ij}=\frac{{\left({\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um e r}^{ij}\right)}\right)}^{\mu_{ij um}}}{{\displaystyle \sum_{e\in {E}_{ij um}}{\left({\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um e r}^{ij}\right)}\right)}^{\mu_{ij um}}}}, $$
    (45)

    and dividing Eq. (41) by Eq. (42) gives the conditional probability:

    $$ \frac{f_{um er}^{ij}}{{\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{um er}^{ij}}}={P}_{um\left(r\Big|e\right)}^{ij}=\frac{{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right)}{{\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right)}}, $$
    (46)

    which corresponds to the CNL choice probability model in Eqs. (9) and (10).

  2. (2)

    Now we consider the mode choice:

    $$ \frac{\partial L}{\partial {q}_{um}^{ij}}=0\kern0.5em \Rightarrow \kern0.5em \left(\frac{\varphi_{ij u}}{\gamma_{ij}}-\frac{1}{\theta_{ij u m}}\right) \ln {q}_{um}^{ij}+\frac{1-{\varphi}_{ij u}}{\gamma_{ij}} \ln \left({\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}\right)-{\varPsi}_{ij u m}+{\phi}_{um}^{ij}-{\lambda}_{ij}=0. $$
    (47)

    From Eq. (44), ϕ um ij can be defined as

    $$ {\phi}_{um}^{ij}=\frac{1}{\theta_{ij um}} \ln {q}_{um}^{ij}-\frac{1}{\theta_{ij um}} \ln {\displaystyle \sum_{e\in {E}_{ij um}}{\left({\displaystyle \sum_{r\in {R}_{ij um e}}{\left({\alpha}_{ij um e r}\right)}^{\frac{1}{\mu_{ij um}}} \exp \left(-\frac{\theta_{ij um}}{\mu_{ij um}}{g}_{um er}^{ij}\right)}\right)}^{\mu_{ij um}}}. $$
    (48)

    Note that the second term on the right hand side is the CNL EPT w um ij. Substituting Eq. (48) into (47) gives

    $$ \frac{\varphi_{ij u}}{\gamma_{ij}} \ln {q}_{um}^{ij}+\frac{1-{\varphi}_{ij u}}{\gamma_{ij}} \ln \left({\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}\right)-{\varPsi}_{ij u m}+{w}_{um}^{ij}-{\lambda}_{ij}=0 $$
    (49)
    $$ {q}_{um}^{ij}{\left({\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}\right)}^{\frac{1-{\varphi}_{ij u}}{\varphi_{ij u}}}= \exp \left(\frac{\gamma_{ij}}{\varphi_{ij u}}\left({\lambda}_{ij}+{\varPsi}_{ij u m}-{w}_{um}^{ij}\right)\right). $$
    (50)

    Using the same principle in the route choice level, we have the marginal probability

    $$ \frac{{\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}}{q_{ij}}={P}_u^{ij}=\frac{{\left({\displaystyle \sum_{m\in {M}_{ij u}} \exp \left(\frac{\gamma_{ij}}{\varphi_{ij u}}\left({\varPsi}_{ij u m}-{w}_{um}^{ij}\right)\right)}\right)}^{\varphi_{ij u}}}{{\displaystyle \sum_{u\in {U}_{ij}}{\left({\displaystyle \sum_{m\in {M}_{ij u}} \exp \left(\frac{\gamma_{ij}}{\varphi_{ij u}}\left({\varPsi}_{ij u m}-{w}_{um}^{ij}\right)\right)}\right)}^{\varphi_{ij u}}}}, $$
    (51)

    and the conditional probability

    $$ \frac{q_{um}^{ij}}{{\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}}={P}_{m\Big|u}^{ij}=\frac{ \exp \left(\frac{\gamma_{ij}}{\varphi_{ij u}}\left({\varPsi}_{ij u m}-{w}_{um}^{ij}\right)\right)}{{\displaystyle \sum_{m\in {M}_{ij u}} \exp \left(\frac{\gamma_{ij}}{\varphi_{ij u}}\left({\varPsi}_{ij u m}-{w}_{um}^{ij}\right)\right)}}, $$
    (52)

    which corresponds to the NL model in Eqs. (4) and (5). This completes the proof. □

Proof of Proposition 4

It is sufficient to prove that objective function in Eq. (19) is strictly convex in the vicinity of route flows and that the feasible region is convex.

The Hessian matrix of Z 1 + Z 2 + Z 3 w.r.t. the route flow variables can be expressed as

$$ \frac{\partial^2\left({Z}_1+{Z}_2+{Z}_3\right)}{\partial {f}_{umer}^{ij}\partial {f}_{umlk}^{ij}}=\left\{\begin{array}{ll}\frac{d{h}_a}{d{v}_a}{\delta}_{umra}^{ij}+\frac{\mu_{ij um}}{\theta_{ij um}{f}_{umer}^{ij}}+\frac{1-{\mu}_{ij um}}{\theta_{ij um}{\displaystyle \sum_{r\in {R}_{ij um e}}{f}_{umer}^{ij}}}>0\hfill &; \kern0.5em e=l,\kern0.5em r=k\hfill \\ {}0\hfill &; \kern0.5em otherwise\hfill \end{array}\right., $$
(53)

which implies the positive definite matrix from Assumptions 2 and 3. The Hessian matrix of the Z 4 + Z 5 + Z 6 w.r.t. the modal demand variables can be expressed as

$$ \frac{\partial^2\left({Z}_4+{Z}_5+{Z}_6\right)}{\partial {q}_{um}^{ij}\partial {q}_{tn}^{ij}}=\left\{\begin{array}{ll}\left(\frac{\varphi_{ij u}}{\gamma_{ij}}-\frac{1}{\theta_{ij u m}}\right)/{q}_{um}^{ij}+\left(\frac{1-{\varphi}_{ij u}}{\gamma_{ij}}\right)/{\displaystyle \sum_{m\in {M}_{ij u}}{q}_{um}^{ij}}>0\hfill &; \kern0.5em u=t,\kern0.5em m=n\hfill \\ {}0\hfill &; \kern0.5em otherwise\hfill \end{array}\right., $$
(54)

which also implies the positive definite matrix. Therefore, the NL-CNL model has a unique solution. This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitthamkesorn, S., Chen, A., Xu, X. et al. Modeling Mode and Route Similarities in Network Equilibrium Problem with Go-Green Modes. Netw Spat Econ 16, 33–60 (2016). https://doi.org/10.1007/s11067-013-9201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-013-9201-y

Keywords

Navigation