Barbosa, H., Barthelemy, M., Ghoshal, G., James, C. R., Lenormand, M., Louail, T., et al. (2018). Human mobility: Models and applications. Physics Reports, 734, 1–74. https://doi.org/10.1016/j.physrep.2018.01.001
Article
Google Scholar
Barnett, G. (2012). Encyclopedia of social networks. Encyclopedia of Social Networks, 722–723. https://doi.org/10.4135/9781412994170
Beine, M., Docquier, F., & Özden, Ç. (2011). Diasporas. Journal of Development Economics, 95(1), 30–41. https://doi.org/10.1016/j.jdeveco.2009.11.004
Article
Google Scholar
Beine, M., & Jeusette, L. (2018). A meta-analysis of the literature on climate change and migration. CREA Discussion Paper, (05), 46. http://wwwfr.uni.lu/recherche/fdef/crea/publications2/discussion_papers
Bell, A., Calvo-Hernandez, C., & Oppenheimer, M. (2019). Migration, intensification, and diversification as adaptive strategies. Socio-Environmental Systems Modeling, 1, 1–18. https://doi.org/10.18174/sesmo.2019a16102
Bell, A. R., Wrathall, D. J., Mueller, V., Chen, J., Oppenheimer, M., Hauer, M., et al. (2021). Migration towards Bangladesh coastlines projected to increase with sea-level rise through 2100. Environmental Research Letters, 16(2). https://doi.org/10.1088/1748-9326/abdc5b
Black, R., Bennett, S. R. G., Thomas, S. M., & Beddington, J. R. (2011). Climate change: Migration as adaptation. Nature, 478(7370), 447–449. https://doi.org/10.1038/478477a
Article
Google Scholar
Bohra-Mishra, P., Oppenheimer, M., Cai, R., Feng, S., & Licker, R. (2017). Climate variability and migration in the Philippines. Population and Environment, 38(3), 286–308. https://doi.org/10.1007/s11111-016-0263-x
Article
Google Scholar
Bohra-Mishra, P., Oppenheimer, M., & Hsiang, S. M. (2014). Nonlinear permanent migration response to climatic variations but minimal response to disasters. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9780–9785. https://doi.org/10.1073/pnas.1317166111
Article
Google Scholar
Cai, R., Feng, S., Oppenheimer, M., & Pytlikova, M. (2016). Climate variability and international migration: The importance of the agricultural linkage. Journal of Environmental Economics and Management, 79, 135–151. https://doi.org/10.1016/j.jeem.2016.06.005
Article
Google Scholar
Carrico, A. R., & Donato, K. (2019). Extreme weather and migration: Evidence from Bangladesh. Population and Environment, 41(1), 1–31. https://doi.org/10.1007/s11111-019-00322-9
Article
Google Scholar
Chun, Y. (2008). Modeling network autocorrelation within migration flows by eigenvector spatial filtering. Journal of Geographical Systems, 10(4), 317–344. https://doi.org/10.1007/s10109-008-0068-2
Article
Google Scholar
Chun, Y., & Griffith, D. A. (2011). Modeling network autocorrelation in space-time migration flow data: An eigenvector spatial filtering approach. Annals of the Association of American Geographers, 101(3), 523–536. https://doi.org/10.1080/00045608.2011.561070
Article
Google Scholar
Chun, Y., & Griffith, D. A. (2013). Spatial statistics and geostatistics: Theory and applications for geographic information science and technology. SAGE Publications Ltd.
Chun, Y., Griffith, D. A., Lee, M., & Sinha, P. (2016). Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. Journal of Geographical Systems, 18(1), 67–85. https://doi.org/10.1007/s10109-015-0225-3
Article
Google Scholar
Coniglio, N. D., & Pesce, G. (2015). Climate variability and international migration: An empirical analysis. Environment and Development Economics, 20(4), 434–468. https://doi.org/10.1017/S1355770X14000722
Article
Google Scholar
Curran, S. R., & Rivero-Fuentes, E. (2003). Engendering migrant networks: The case of Mexican migration. Demography, 40(2), 289–307. https://doi.org/10.2307/3180802
Article
Google Scholar
Desmarais, B. A., & Cranmer, S. J. (2012). Statistical inference for valued-edge networks: The generalized exponential random graph model. PLoS One, 7(1). https://doi.org/10.1371/journal.pone.0030136
Entwisle, B., Williams, N. E., Verdery, A. M., Rindfuss, R. R., Walsh, S. J., Malanson, G. P., et al. (2016). Climate shocks and migration: An agent-based modeling approach. Population and Environment, 38(1), 47–71. https://doi.org/10.1007/s11111-016-0254-y
Article
Google Scholar
Feng, S., Krueger, A. B., & Oppenheimer, M. (2010). Linkages among climate change, crop yields and Mexico-US cross-border migration. Proceedings of the National Academy of Sciences, 107(32), 14257–14262. https://doi.org/10.1073/pnas.1002632107
Article
Google Scholar
Fussell, E., Curtis, K. J., & DeWaard, J. (2014). Recovery migration to the City of New Orleans after Hurricane Katrina: A migration systems approach. Population and Environment, 35(3), 305–322. https://doi.org/10.1007/s11111-014-0204-5
Article
Google Scholar
Fussell, E., & Massey, D. S. (2004). The limits to cumulative causation: International migration from Mexican urban areas. Demography, 41(1), 151–171. https://doi.org/10.1353/dem.2004.0003
Article
Google Scholar
Garcia, A. J., Pindolia, D. K., Lopiano, K. K., & Tatem, A. J. (2015). Modeling internal migration flows in sub-Saharan Africa using census microdata. Migration Studies, 3(1), 89–110. https://doi.org/10.1093/migration/mnu036
Article
Google Scholar
Gray, C., & Mueller, V. (2012). Drought and population mobility in rural Ethiopia. World Development, 40(1), 134–145. https://doi.org/10.1016/j.worlddev.2011.05.023
Article
Google Scholar
Gray, C., & Wise, E. (2016). Country-specific effects of climate variability on human migration. Climatic Change, 135(3–4), 555–568. https://doi.org/10.1007/s10584-015-1592-y
Article
Google Scholar
Hauer, M. E. (2017). Migration induced by sea-level rise could reshape the US population landscape. Nature Climate Change, 7(5), 321–325. https://doi.org/10.1038/nclimate3271
He, X., Pan, M., Wei, Z., Wood, E. F., & Sheffield, J. (2020). A global drought and flood catalogue from 1950 to 2016. Bulletin of the American Meteorological Society, 101(5), E508–E535. https://doi.org/10.1175/BAMS-D-18-0269.1
Article
Google Scholar
Hoff, P. D. (2015). Dyadic data analysis with amen. http://arxiv.org/abs/1506.08237
Hoff, P. D. (2021). Additive and Multiplicative Effects Network Models. Statistical Science, 36(1), 34–50. https://doi.org/10.1214/19-sts757
Article
Google Scholar
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent Space Approaches to Social Network Analysis. Journal of the American Statistical Association, 97(460), 1090–1098. https://doi.org/10.1198/016214502388618906
Article
Google Scholar
Hoff, P., Fosdick, B., & Volfovsky, A. (2018). amen: Additive and multiplicative effects models for networks and relational data. http://github.com/pdhoff/amen
Hunter, L. M., Luna, J. K., & Norton, R. M. (2015). Environmental dimensions of migration. Annual Review of Sociology, 41, 377–397. https://doi.org/10.1146/annurev-soc-073014-112223
Article
Google Scholar
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, R.K. Pachauri, & L. A. Meyer, Eds.)Intergovernmental Panel on Climate Change (IPCC) [Core Writing Team, Pachauri, R.K. and Reisinger, A. (eds.)]. http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf
IPCC. (2019a). Summary for policymakers. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, M. T. P. Zhai, E. Poloczanska, K. Mintenbeck, et al. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf
IPCC. (2019b). Summary for policymakers. In P. R. Shukla, J. Skea, E. C. Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, et al. (Eds.), Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (Vol. In press). https://www.ipcc.ch/site/assets/uploads/sites/4/2019/12/02_Summary-for-Policymakers_SPM.pdf
Klabunde, A., & Willekens, F. (2016). Decision-making in agent-based models of migration : State of the art and challenges. European Journal of Population, 32(1), 73–97. https://doi.org/10.1007/s10680-015-9362-0
Article
Google Scholar
Krivitsky, P. N. (2012). Exponential-family random graph models for valued networks. Electron. J. Statist., 6, 1100–1128. https://doi.org/10.1214/12-EJS696
Article
Google Scholar
Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Hanasaki, N., et al. (2017). Water scarcity assessments in the past, present, and future Earth’ s Future. Earth’s Future, 5(6), 545–559. https://doi.org/10.1002/eft2.200
Article
Google Scholar
Mahajan, P., & Yang, D. (2020). Taken by storm: Hurricanes, migrant networks, and US immigration. American Economic Journal: Applied Economics, 12(2), 250–277. https://doi.org/10.1257/app.20180438
Article
Google Scholar
Massey, D. S., Arango, J., Hugo, G., Kouaouci, A., Pellegrino, A., & Taylor, J. E. (1993). Theories of international migration : A review and appraisal. Population and Development Review, 19(3), 431–466.
Article
Google Scholar
Mastrorillo, M., Licker, R., Bohra-Mishra, P., Fagiolo, G., Estes, D., & L., & Oppenheimer, M. (2016). The influence of climate variability on internal migration flows in South Africa. Global Environmental Change, 39, 155–169. https://doi.org/10.1016/j.gloenvcha.2016.04.014
Article
Google Scholar
McAlpine, A., Kiss, L., Zimmerman, C., & Chalabi, Z. (2021). Agent-based modeling for migration and modern slavery research: A systematic review. Journal of Computational Social Science (Vol. 4). Springer Singapore. https://doi.org/10.1007/s42001-020-00076-7
Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology.
McLeman, R., & Gemenne, F. (Eds.). (2018). Routledge handbook of environmental migration and displacement. Routledge.
Google Scholar
Mekonnen, M. M., & Hoekstra, Y. A. (2016). Four billion people experience water scarcity. Science Advances, 2(2), 1–7. https://doi.org/10.1126/sciadv.1500323
Article
Google Scholar
Mueller, V., Gray, C., & Hopping, D. (2020). Climate-Induced migration and unemployment in middle-income Africa. Global Environmental Change, 65(June), 102183. https://doi.org/10.1016/j.gloenvcha.2020.102183
Article
Google Scholar
Mueller, V., Gray, C., & Kosec, K. (2014). Heat stress increases long-term human migration in rural Pakistan. Nature Climate Change, 4(January), 182–185. https://doi.org/10.1038/NCLIMATE2103
Article
Google Scholar
Nawrotzki, R. J., Riosmena, F., Hunter, L. M., & Runfola, D. M. (2015). Amplification or suppression: Social networks and the climate change-migration association in rural Mexico. Global Environmental Change, 35, 463–474. https://doi.org/10.1016/j.gloenvcha.2015.09.002
Article
Google Scholar
Rigaud, K. K., de Sherbinin, A., Jones, Bryan Bergmann, J., Clement, V., Ober, K., Schewe, J., et al. (2018). Groundswell: Preparing for Internal Climate Migration. Wachington, DC. https://openknowledge.worldbank.org/handle/10986/29461
Rozenblat, C., & Melançon, G. (2013). Introduction. In C. Rozenblat & G. Melançon (Eds.), Methods for multilevel analysis and visualisation of geographical networks (pp. 1–15). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6677-8_1
Sheffield, J., Goteti, G., Wen, F., & Wood, E. F. (2004). A simulated soil moisture based drought analysis for the United States. Journal of Geophysical Research d: Atmospheres, 109(24), 1–19. https://doi.org/10.1029/2004JD005182
Article
Google Scholar
Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19(13), 3088–3111. https://doi.org/10.1175/JCLI3790.1
Article
Google Scholar
Smirnov, O., Zhang, M., Xiao, T., Orbell, J., Lobben, A., & Gordon, J. (2016). The relative importance of climate change and population growth for exposure to future extreme droughts. Climatic Change, 138(1–2), 41–53. https://doi.org/10.1007/s10584-016-1716-z
Article
Google Scholar
Thober, J., Schwarz, N., & Hermans, K. (2018). Agent-based modeling of environment-migration linkages: a review. Ecology and Society, 23(2):41. https://doi.org/10.5751/ES-10200-230241
Tiefelsdorf, M. (2003). Misspecifications in interaction model distance decay relations: A spatial structure effect. Journal of Geographical Systems, 5(1), 25–50. https://doi.org/10.1007/s101090300102
Ward, M. D., Ahlquist, J. S., & Rozenas, A. (2013). Gravity’s rainbow: A dynamic latent space model for the world trade network. Network Science, 1(1), 95–118. https://doi.org/10.1017/nws.2013.1
Article
Google Scholar
Wilson, J. D., Denny, M. J., Bhamidi, S., Cranmer, S. J., & Desmarais, B. A. (2017). Stochastic weighted graphs: Flexible model specification and simulation. Social Networks, 49, 37–47. https://doi.org/10.1016/j.socnet.2016.11.002
Article
Google Scholar
Xiao, T., Oppenheimer, M., He, X., & Mastrorillo, M. (2021). Replication data for: Complex climate and network effects on internal migration in South Africa revealed by a network model. Harvard Dataverse. https://doi.org/10.7910/DVN/NSKZ45
Article
Google Scholar