Skip to main content
Log in

Modeling network autocorrelation within migration flows by eigenvector spatial filtering

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Although the assumption of independence among interaction flows frequently is engaged in spatial interaction modeling, in many circumstances it leads to misspecified models and incorrect inferences. An informed approach is to explicitly incorporate an assumed relationship structure among the interaction flows, and to explicitly model the network autocorrelation. This paper illustrates such an approach in the context of U.S. interstate migration flows. Behavioral assumptions, similar to those of the intervening opportunities or the competing destinations concepts, exemplify how to specify network flows that are related to particular origin–destination combinations. The stepwise incorporation of eigenvectors, which are extracted from a network link matrix, captures the network autocorrelation in a Poisson regression model specification context. Spatial autocorrelation in Poisson regression is measured by the test statistic of Jacqmin-Gadda et al. (Stat Med 16(11):1283–1297, 1997). Results show that estimated regression parameters in the spatial filtering interaction model become more intuitively interpretable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See Guldmann (1999) for a more detailed discussion in the definition of geographic space over which intervening opportunity factors may be computed.

  2. Note that eigenvector spatial filtering treats the eigenvectors of the transformed spatial link matrix V as proxies for genuine unobserved variables.

  3. Under “queen” type contiguity, spatial contiguity is defined as sharing a common boundary or vertex.

  4. The 95% confidence intervals for the distance parameters from the unfiltered and spatially filtered model specifications are (−0.4680, −0.3668) and (−0.4395, −0.3729), respectively.

  5. Note that one confounding factor that should be mentioned is the national economic growth that is occurring. Its geographic distribution focuses on warmer climates because of such regional attributes as non-union labor, relatively inexpensive and abundant available land, and lower taxes (Hanson 1998).

  6. The 95% confidence intervals for the distance parameters from the unfiltered and spatially filtered model specifications are (−0.5491, −0.4459) and (−0.4660, −0.4002), respectively.

References

  • Almeida LMW, Goncalves MB (2001) A methodology to incorporate behavioral aspects in trip-distribution models with an application to estimate student flow. Environ Plan A 33(6):1125–1138

    Article  Google Scholar 

  • Anselin L, Griffith DA (1988) Do spatial effects really matter in regression analysis? Papers Reg Sci Assoc 65:11–34

    Article  Google Scholar 

  • Assuncao RM, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162

    Article  Google Scholar 

  • Baxter M (1983) Estimation and inference in spatial interaction models. Progr Hum Geogr 7:40–59

    Google Scholar 

  • Berglund S, Karlstrom A (1999) Identifying local spatial association in flow data. J Geogr Syst 1(3):219–236

    Article  Google Scholar 

  • Black WR (1992) Network autocorrelation in transport network and flow systems. Geogr Anal 24(3):207–222

    Google Scholar 

  • Bolduc D, Dagenais MG, Gaudry MJI (1989) Spatially autocorrelated errors in origin–destination models: a new specification applied to aggregate mode choice. Transp Res Part B 23(5):361–372

    Article  Google Scholar 

  • Boots BN, Kanaroglou PS (1988) Incorporating the effects of spatial structure in discrete choice models of migration. J Reg Sci 28(4):495–509

    Article  Google Scholar 

  • Cadwallader MT (1992) Migration and residential mobility: macro and micro approaches. University of Wisconsin Press, Madison

    Google Scholar 

  • Congdon P (1992) Aspects of general linear modelling of migration. Statistician 41:133–153

    Article  Google Scholar 

  • Congdon P (1993) Approaches to modelling overdispersion in the analysis of migration. Environ Plan A 25(10):1481–1510

    Article  Google Scholar 

  • Congdon P (2002a) A Bayesian approach to prediction using the gravity model with an application to patient flow modeling. Geogr Anal 32(3):205–224

    Google Scholar 

  • Congdon P (2002b) A model for mental health needs and resourcing small geographic areas: a multivariate spatial perspective. Geogr Anal 34(2):169–186

    Article  Google Scholar 

  • Cressie N, Chan HH (1989) Spatial modeling of regional variables. J Am Stat Assoc 84(405):393–401

    Article  Google Scholar 

  • Cushing BJ (1987) Location-specific amenities, topography, and population migration. Ann Reg Sci 21:74–85

    Google Scholar 

  • Davies PS, Greenwood MJ, Li H (2001) A conditional logit approach to U.S. state-to-state migration. J Reg Sci 41(2):337–360

    Article  Google Scholar 

  • de Jong P, Sprenger C, van Veen F (1984) On extreme values of Moran’s I and Geary’s C. Geogr Anal 16(1):17–24

    Google Scholar 

  • Fik TJ, Amey RG, Mulligan GF (1992) Labor migration amongst hierarchically competing and intervening origins and destinations. Environ Plan A 24:1271–1290

    Article  Google Scholar 

  • Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in the European Union. J Reg Sci (forthcoming)

  • Flowerdew R (1991) Poisson regression modelling of migration. In: Stillwell J, Congdon P (eds) Migration models: macro and micro approaches. Belhaven, New York, pp 92–112

    Google Scholar 

  • Flowerdew R, Aitkin M (1982) A method of fitting the gravity model based on the Poisson distribution. J Reg Sci 22(2):191–202

    Article  Google Scholar 

  • Flowerdew R, Lovett A (1988) Fitting constrained Poisson regression models to inter-urban migration. Geogr Anal 20(4):297–307

    Google Scholar 

  • Fotheringham AS (1983) A new set of spatial-interaction models: the theory of competing destinations. Environ Plan A 15(1):15–36

    Article  Google Scholar 

  • Fotheringham AS (1986) Modelling hierarchical destination choice. Environ Plan A 18(3):401–418

    Article  Google Scholar 

  • Fotheringham AS (1991) Migration and spatial structure: the development of the competing destination model. In: Stillwell J, Congdon P (eds) Migration models: macro and micro approaches. Belhaven, New York, pp 57–72

    Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Galle OR, Taeuber KE (1966) Metropolitan migration and intervening opportunities. Am Sociol Rev 31(1):5–13

    Article  Google Scholar 

  • Getis A (1990) Screening for spatial dependence in regression analysis. Papers Reg Sci Assoc 69:69–81

    Article  Google Scholar 

  • Getis A (1995) Spatial filtering in a regression framework: examples using data on urban crime, regional inequality, and government expenditures. In: Anselin L, Florax RJGM (eds) New directions in spatial econometrics. Springer, Berlin, pp 172–188

    Google Scholar 

  • Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140

    Article  Google Scholar 

  • Gleave D, Cordey-Hayes M (1977) Migration dynamics and labor market turnover. Prog Plan 8(1):1–95

    Article  Google Scholar 

  • Greenwood MJ (1985) Human migration: theory, models, and empirical studies. J Reg Sci 25(4):521–544

    Article  Google Scholar 

  • Griffith DA (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-reference data. Can Geogr 40(4):351–367

    Article  Google Scholar 

  • Griffith DA (2000) A linear regression solution to the spatial autocorrelation problem. J Geogr Syst 2(2):141–156

    Article  Google Scholar 

  • Griffith DA (2002) A spatial filtering specification of the auto-Poisson model. Stat Probab Lett 58(3):245–251

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, Berlin

    Google Scholar 

  • Griffith DA (2004) A spatial filtering specification for the autologistic model. Environ Plan A 36(10):1791–1811

    Article  Google Scholar 

  • Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355

    Article  Google Scholar 

  • Griffith DA (2007) Spatial structure and spatial interaction: 25 years later. Rev Reg Stud 37(1):28–38

    Google Scholar 

  • Guldmann JM (1999) Competing destinations and intervening opportunities interaction models of inter-city telecommunication. Papers Reg Sci 78(2):179–194

    Article  Google Scholar 

  • Haining R (1991) Bivariate correlation and spatial data. Geogr Anal 23(3):210–227

    Google Scholar 

  • Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Hanson GH (1998) North American economic integration and industry location. Oxford Rev Econ Policy 14:30–44

    Article  Google Scholar 

  • Harary F (1999) Graph theory. Perseus Books, Reading, MA

    Google Scholar 

  • Homes JH, Haggett P (1977) Graph theory interpretation of flow matrices: a note on maximization procedures for identifying significant links. Geogr Anal 9(4):388–399

    Google Scholar 

  • Jacqmin-Gadda H, Commenges D, Nejjari C, Dartigues JF (1997) Tests of geographical correlation with adjustment for explanatory variables: an application to Dyspnoea in the elderly. Stat Med 16(11):1283–1297

    Article  Google Scholar 

  • Jayet H (1990) Spatial search processes and spatial interaction. 1. Sequential search, intervening opportunities, and spatial search equilibrium. Environ Plan A 22(5):583–599

    Article  Google Scholar 

  • Law J, Haining R (2004) Bayesian approach to modeling binary data: the case of high-intensity crime analysis. Geogr Anal 36(3):197–216

    Article  Google Scholar 

  • Liao PS (2001) Contextual analysis of rural migration intention: a comparison of Taiwanese and Pennsylvania data. Int J Comp Sociol 42(5):435–460

    Article  Google Scholar 

  • Lin G, Zhang T (2007) Loglinear residual tests of Moran’s I autocorrelation and their applications to Kentucky breast cancer data. Geogr Anal 39(3):293–310

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Vining GG (2002) Generalized linear models with applications in engineering and the sciences. Wiley, New York

    Google Scholar 

  • Mulder CH, Hooimeijer P (1999) Residential relocations in the life course. In: van Wissen LJG, Dykstra PA (eds) Population issues: an interdisciplinary focus. Kluwer Academic Press, New York, pp 159–186

    Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 35(3):370–384

    Google Scholar 

  • Newbold KB (2005) Spatial scale, return and onward migration, and the Long-Boertlein index of repeat migration. Papers Reg Sci 84(2):281–290

    Article  Google Scholar 

  • Oden N (1995) Adjusting Moran’s I for population density. Stat Med 14(1):17–26

    Article  Google Scholar 

  • Plane DA (1984) Migration space: doubly constrained gravity model mapping of relative interstate separation. Ann Assoc Am Geogr 74(2):244–245

    Article  Google Scholar 

  • Prentice RL, Zhao LP (1991) Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 47(3):825–839

    Article  Google Scholar 

  • Ruiter ER (1967) Toward a better understanding of the intervening opportunities model. Transp Res 1:47–56

    Article  Google Scholar 

  • Shaw RP (1985) Intermetropolitan migration in Canada: changing determinants over three decades. NC Press, Toronto

    Google Scholar 

  • Schabenberger O, Gotway CA (2005) Statistical methods for spatial data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Schwartz A (1973) Interpreting the effects of distance on migration. J Polit Econ 81(5):1153–1169

    Article  Google Scholar 

  • Shvetsov VI, Dubov YA (1997) Expected distributions in the intervening opportunities model. Environ Plan A 29(7):1229–1241

    Article  Google Scholar 

  • Stouffer SA (1940) Intervening opportunities: a theory relating mobility and distance. Am Sociol Rev 5(6):845–867

    Article  Google Scholar 

  • Stouffer SA (1960) Intervening opportunities and competing migrants. J Reg Sci 2(1):1–26

    Google Scholar 

  • Tiefelsdorf M (2000) Modelling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Springer, Berlin

    Google Scholar 

  • Tiefelsdorf M (2003) Misspecifications in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5(1):25–50

    Article  Google Scholar 

  • Tiefelsdorf M, Boots BN (1995a) The exact distribution of Moran’s I. Environ Plan A 27(6):985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Boots BN (1995b) The specification of constrained interaction models using the SPSS Loglinear procedure. Geogr Syst 2(1):21–38

    Google Scholar 

  • Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221

    Article  Google Scholar 

  • Tiefelsdorf M, Griffith DA, Boots BN (1999) A variance-stabilizing coding scheme for spatial link matrices. Environ Plan A 31(1):165–180

    Article  Google Scholar 

  • US Department of Commerce (2002) National Oceanic and Atmospheric Administration, Environmental Data and Information Service. State, regional, and national monthly temperature (weighted by area), 1971–2000 (and previous normals periods). National Climatic Data Center, Asheville

  • Wakefield JC (2003) Sensitivity analyses for ecological regression. Biometrics 59(1):9–17

    Article  Google Scholar 

  • Wakefield JC, Best NG, Waller LA (2000) Bayesian approaches to disease mapping. In: Elliott P, Wakefield J, Best NG, Briggs DJ (eds) Spatial epidemiology: method and application. Oxford University Press, Oxford, pp 104–127

    Google Scholar 

  • Waldhör T (1996) The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Stat Med 15(7–9):887–892

    Article  Google Scholar 

  • Wilson AG (1970) Entropy in urban and regional modelling. Pion Limited, London

    Google Scholar 

Download references

Acknowledgments

The author thanks Michael Tiefelsdorf for useful comments on this research, and anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwan Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, Y. Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10, 317–344 (2008). https://doi.org/10.1007/s10109-008-0068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-008-0068-2

Keywords

JEL Classification

Navigation