Skip to main content
Log in

Wear Resistance and Characterization of Borided Ni-Based Alloys

  • PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In this study, nickel-magnesium (Ni–Mg) alloys with a 97% Ni–3% Mg compositions were successfully borided with packet boriding at temperatures from 900 to 1000°C and treatment time 1.5–4.5 h. The properties, surface roughness, and density of the resulting boride layers were determined by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and microhardness tests. XRD analysis revealed NiB, Ni3B, and Ni2B phases after boriding. The coated boride layer in the alloy resulted in a smooth, dense SEM-approved property. In Ni–Mg alloys, the diffusion of boron atoms from the surface to the matrix accelerated with increasing temperature and treatment time. As such, boride layer thicknesses increased. It has been observed that Mg does not prevent the diffusion of the boron atom. Based on the treatment time and temperature, the thickness of the boride layer of the NM alloy varied between 96.74 and 248.36 μm. The hardness of the boride layer ranged between 1675 and 1832 HV0.05 for the Ni–Mg alloy, while the Vickers hardness value of untreated nickel amounted to 98 HV0.05. The surface roughness of Ni–Mg alloys ranged between 0.25 and 0.58 μm, and its densities were 8.4–8.68 g/cm3. Surface roughness values increased with increasing boride layer thickness. The wear tests were carried out in a ball–disc arrangement under dry friction conditions at room temperature with an applied load of 10 N and a sliding speed of 0.3 m/sec at a sliding distance of 250 m. The coefficient of friction of the borided Ni–Mg alloys ranged from 0.42 to 0.64, while that of the unborided alloys was 0.86. It was observed that the wear rate of borided and unborided Ni–Mg alloys ranged from 21.86 ⋅ 10–5 mm3/N ⋅ m to 89.92 ⋅ 10–5 mm3/N ⋅ m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. X. Lirong, C. Xuefei, W. Kang, Y. Liu, D. Yin, Z. Hu, H. Zhou, and Y. Zhu, “Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg–Ag alloy,” Scrip. Mater., 191, 219–224 (2021).

    Article  Google Scholar 

  2. S. Sandeep, S. Gurpreet, and B. Niraj, “Electrophoretic deposition of Fe3O4 nanoparticles incorporated hydroxyapatite-bioglass-chitosan nanocomposite coating on AZ91 Mg alloy,” Mater. Today Commun., 26, 101870 (2021).

    Article  Google Scholar 

  3. I. Gunes, T. Uygunoglu, and M. Erdogan, “Effect of sintering duration on some properties of pure magnesium,” Powder Metall. Metal Ceram., 54, 156–165 (2015).

    Article  CAS  Google Scholar 

  4. R.K. Koju and Y. Mishin, “Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al–Mg alloys,” Acta Materialia.,. 201, 596–603 (2020).

    Article  CAS  Google Scholar 

  5. L. Dan-yang, W. Jie-xia, and L. Jin-feng, “The effect of Ag element on the microstructure characteristic evolution of an Al–Cu–Li–Mg alloy,” J. Mater. Research and Technol., 9, No. 5, 11121–11134 (2020).

    Article  Google Scholar 

  6. X. Bingqian, S. Jiapeng, and Y. Zhenquan, “A near-isotropic ultrafine-grained Mg–Gd–Ag alloy with high strength-ductility synergy,” J. Mater. Research and Technol., 9, No. 6, 13616–13624 (2020).

    Article  Google Scholar 

  7. Z. Hua, R. Shuai, L. Xia, L. Wang, J. Fan, S. Chen, L. Zhu, F. Meng, Y. Tong, H.J. Roven, S. Zhang, and L. Jiang, “Dramatically enhanced stamping formability of Mg–3Al–1Zn alloy by weakening (0001) basal texture,” J. Mater. Research and Technol., 9, No. 6, 14742–14753 (2020).

    Article  Google Scholar 

  8. C. Hukui and J. Hongli, “Oxidation of molten AZ91D Mg alloy in hexafluoropropylene/air atmospheres,” Corros. Sci., 179, 109148 (2021).

    Article  Google Scholar 

  9. M. Long, W. Zhe, W. Lu, L. Guo, and Z. Guo, “Novel and efficient purification of scrap Al–Mg alloys using supergravity technology,” Waste Managem., 119, 22–29 (2021).

    Article  Google Scholar 

  10. P.A. Pulido-Suárez, K.S. Uñate-González, J.G. Tirado-González, A. Esguerra-Arce, and J. Esguerra-Arce, “The evolution of the microstructure and properties of ageable Al–Si–Zn–Mg alloy during the recycling of milling chips through powder metallurgy,” J. Mater. Research and Technol., 9, No. 5, 11769–11777 (2020).

    Article  Google Scholar 

  11. Z. Lei, M. Guojun, J. Peipeng, and Y. Zihan, “Role of Y on the microstructure, texture and mechanical properties of Mg–Zn–Zr alloys by powder metallurgy,” J. Alloys Compd., 810, 151843 (2019).

    Article  Google Scholar 

  12. N. Makuch, M. Kulka, P. Dziarski, S. Taktak, “The influence of chemical composition of Ni-based alloys on microstructure and mechanical properties of plasma paste borided layers,” Surf. & Coat. Technol., 367, 187–202 (2019).

    Article  CAS  Google Scholar 

  13. V.I. Dybkov, “Thermochemical boriding of Fe–5% Cr Alloy,” Powder Metall. Metal Ceram., 54, No. 9–10, 652–664 (2016).

    Article  CAS  Google Scholar 

  14. I. Yildiz, A.G. Çelik, and I. Gunes, “Characterization and diffusion kinetics of borided Ni–Mg alloys. Protection of Metals and Physical Chemistry of Surfaces. 56, No. 5, 1015–1022 (2020).

  15. D. Liu, Y. Duan, W. Bao, and M. Peng, “Characterization and growth kinetics of boride layers on Ti–5Mo–5V–8Cr–3Al alloy by pack boriding with CeO2,” Mater. Charac., 164, 110362 (2020).

    Article  CAS  Google Scholar 

  16. J. Li, S. Jeffs, M. Whittaker, and N. Martin, “Boride formation behaviour and their effect on tensile ductility in cast TiAl-based alloys,” Mater. Design, 195, 109064 (2020).

    Article  CAS  Google Scholar 

  17. R. Chegroune, M. Keddam, Z.N. Abdellah, S. Ulker, S. Taktak, and I. Gunes, “Characterization and kinetics of plasma-paste-borided AISI 316 steel,” Materiali in Tehnologije, 50, 263–268 (2016).

    Article  CAS  Google Scholar 

  18. I. Gunes, M. Keddam, R. Chegroune, and M. Ozcatal, “Growth kinetics of boride layers formed on 99.0% purity nickel,” Bull. Mater. Sci.,. 38, 1113–1118 (2015).

    Article  CAS  Google Scholar 

  19. Y.S. Zhu, Y.X. Yin, J.Y. Wu, F. Liu, W. Lu, D. Zuo, H. Xiao, D. Cao, and T. Jo Ko, “Effect of RE on accelerating the kinetics of boride layer growth on titanium alloy,” J. Alloys Compd. 844, 156091 (2020).

    Article  CAS  Google Scholar 

  20. P.V.S. Muralikrishna, P.S. Kishore, N. Ramanaiah, and V.V.S.P.K. Pathanjali, “Nickel base alloy with metal matrix composite zirconium boride with inorganic coatings for high temperature environments,” Mater. Today: Proceed., 39, 1287–1290 (2021).

    CAS  Google Scholar 

  21. E.J. Hernández-Ramírez, A. Guevara-Morales, U. Figueroa-López, and I. Campos-Silva, “Wear resistance of diffusion annealed borided AISI 1018 steel,” Mater. Lett., 277, 128297 (2020).

    Article  Google Scholar 

  22. A. Erdogan, A. Günen, M.S. Gok, and S. Zeytin, “Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy,” Vacuum, 183, 109820 (2021).

    Article  CAS  Google Scholar 

  23. I. Gunes, M. Erdogan, and A.G. Celik, “Corrosion behavior and characterization of plasma nitrided and borided AISI M2 steel,” Mater. Research., 17, 612–618 (2014).

    Article  CAS  Google Scholar 

  24. J.H. Oha, M. Kima, Y.L. Lee, S.H. Hong, S.S. Park, T.H. Kim, and S. Choi, “Synthesis of cobalt boride nanoparticles and h-BN nanocage encapsulation by thermal plasma,” Ceram. Internat., 46, 28792–28799 (2020).

    Article  Google Scholar 

  25. I. Gunes and A.G. Celik, “Surface characterization of borided S220 rebar,” J. Charact., 1, 66–70 (2021).

    Google Scholar 

  26. M.C. Paulisch, N. Wanderka, G. Miehe, D. Mukherji, J. Rösler, and J. Banhart, “Characterization of borides in Co–Re–Cr-based high-temperature alloys,” J. Alloys Compd., 569, 82–87 (2013).

    Article  CAS  Google Scholar 

  27. M. Kulka, P. Dziarski, N. Makuch, A. Piasecki, and A. Miklaszewski, “Microstructure and properties of laser-borided Inconel 600-alloy,” Appl. Surf. Sci., 284, 757–771 (2013).

    Article  CAS  Google Scholar 

  28. N. Makuch, “Nanomechanical properties and fracture toughness of hard ceramic layer produced by gas boriding of Inconel 600 alloy,” Trans. Nonferrous Metal. Soc. China,” 30, 428–448 (2020).

    Article  CAS  Google Scholar 

  29. N. Makuch, M. Kulka, and M. Paczkowska, “Nanomechanical properties of gas-borided layer produced on Nimonic 80A-alloy,” Ceram. Int., 43, 8255–8261 (2017).

    Article  CAS  Google Scholar 

  30. I. Mejía-Caballero, N. Sebastian-Cardenas, U. Figueroa-Lopez, J. Martínez-Trinidad, and I. Campos-Silva, “The effect of aging treatment on the indentation properties of a nickel boride layer,” Mater. Today Commun., 26, 101907 (2021).

    Article  Google Scholar 

  31. S. Sahin, “Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714,” J. Mater. Process. Technol., 209, No. 4, 1736–1741 (2009).

    Article  CAS  Google Scholar 

  32. I. Gunes, “Wear behavior of plasma paste boronized of AISI 8620 steel with borax and B2O3 paste mixtures,” J. Mater. Sci. & Technol., 29, No. 7, 662–668 (2013).

    Article  CAS  Google Scholar 

  33. M. Tarakci, Y. Gencer, and A. Calik, “The pack-boronizing of pure vanadium under a controlled atmosphere,” Appl. Surf. Sci. 256, 7612–7618 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Afyon Kocatepe University BAPK 17.MYO.05. The authors highly appreciate the support of the Committee on Scientific Research Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Gunes.

Additional information

Published in Poroshkova Metallurgiya, Vol. 60, Nos. 11–12 (542), pp. 80–90, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, I., Yildiz, I. & Çelik, A.G. Wear Resistance and Characterization of Borided Ni-Based Alloys. Powder Metall Met Ceram 60, 717–726 (2022). https://doi.org/10.1007/s11106-022-00283-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-022-00283-z

Keywords

Navigation