Skip to main content
Log in

Combination of Mechanical and Electromagnetic Stirring to Distribute Nano-Sized Al2O3 Particles in Magnesium Matrix Composite

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In this article, a novel stirring method has been developed for producing metal matrix nanocomposites, in which two different stirring methods, i.e. mechanical and electromagnetic stirrings, have been used simultaneously. Mechanical stirring might not be sufficient enough to break nano-agglomerations properly. Moreover, this method makes some unwanted porosities and gas entrapments in the composites. On the other hand, the electromagnetic stirring as a sort of body force (with no considerable shear stresses) could be used up to solidification decreasing the dendritic microstructures, gas entrapments, and undesirable agglomerations and impurities. Applying these both stirring methods simultaneously as an electromagnetic-mechanical stirring method, the distribution of reinforcing nanoparticles throughout the matrix phase would be more desirable due to better stirring conditions. In addition, since it is a simple and applicable approach, it can be used for mass production. Magnesium/Al2O3 nanocomposite with volume fractions of 0.5, 1.0, and 1.5% have been fabricated accordingly and then hot-extruded at 350°C using 20 : 1 extrusion ratio. According to the scanning electron microscopy (SEM) results, the nanoparticles have an appropriate distribution in the matrix. Also, comparing the results of microstructural evaluation and Vickers microhardness, tension and compression tests, it was observed that the grain size was decreased and the hardness and yield stress (in both tension and compression tests) were improved by adding more nanoparticles to magnesium matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. P. Zhou, E. Beeh, M. Wang, and H.E. Friedrich, “Dynamic tensile behaviors of AZ31B magnesium alloy processed by twin-roll casting and sequential hot rolling,” Trans. Nonferrous Met. Soc. China., 26, No. 11, 2846–2856 (2016); doi: https://doi.org/https://doi.org/10.1016/S1003-6326(16)64413-8.

  2. M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole, “Enhanced properties of Mg-based nanocomposites reinforced with Al2O3 nano-particles,” Mater. Sci. Eng. A, 519, No. 1, 198–203 (2009); doi: https://doi.org/10.1016/j.msea.2009.05.001.

    Article  CAS  Google Scholar 

  3. Q. Chen, G. Chen, L. Han, N. Hu, F. Han, Z. Zhao, X. Xia, and Y. Wan, “Microstructure evolution of SiCp/ZM6 (Mg–Nd–Zn) magnesium matrix composite in the semi-solid state,” J. Alloy. Compd., 656, 67-76 (2016); doi: https://doi.org/https://doi.org/10.1016/j.jallcom.2015.09.135.

  4. C.J. Wang, K.K. Deng, S.S. Zhou, and W. Liang, “Dynamic recrystallization behavior of bimodal size SiCp-reinforced Mg matrix composite during hot deformation,” Acta Metall. Sin. (Engl. Lett.), 29, No. 6, 527–537 (2016); doi: https://doi.org/10.1007/s40195-016-0415-0.

    Article  CAS  Google Scholar 

  5. X. Zhang, L. Liao, N. Ma, and H. Wang, “Mechanical properties and damping capacity of magnesium matrix composites,” Compos. Part A Appl. Sci. Manuf., 37, No. 11, 2011–2016 (2006); doi: https://doi.org/https://doi.org/10.1016/j.compositesa.2005.12.007.

  6. Q.H. Yuan, D.M. Fu, X.S. Zeng, and Yong Liu, “Fabrication of carbon nanotube reinforced AZ91D composite with superior mechanical properties,” Trans. Nonferrous Met. Soc. China,27, No. 8, 1716–1724 (2017); doi: https://doi.org/https://doi.org/10.1016/S1003-6326(17)60194-8.

  7. Y. Radi and R. Mahmudi, “Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing,” Mater. Sci. Eng. A, 527, Nos. 10–11, 2764–2771 (2010); doi:https://doi.org/10.1016/j.msea.2010.01.029.

    Article  Google Scholar 

  8. P. Narayanasamy, and N. Selvakumar, “Tensile, compressive and wear behaviour of self-lubricating sintered magnesium based composites,” Trans. Nonferrous Met. Soc. China, 27, No. 2, 312–323 (2017); doi: https://doi.org/https://doi.org/10.1016/S1003-6326(17)60036-0.

  9. X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, and D.L. Peng, “Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM,” Compos. Sci. Technol., 67, Nos. 11–12, 2253-2260 (2007); doi: https://doi.org/https://doi.org/10.1016/j.compscitech.2007.01.022.

  10. K.B. Nie, X.J. Wang, X.S. Hu, L. Xu, K. Wu, and M.Y. Zheng, “Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration,” Mater. Sci. Eng. A, 528, No. 15, 5278–5282 (2011); doi: https://doi.org/https://doi.org/10.1016/j.msea.2011.03.061.

  11. M. Paramsothy, X.H. Tan, J. Chan, R. Kwok, and M. Gupta., “Al2O3 nanoparticle addition to concentrated magnesium alloy AZ81: enhanced ductility,” J. Alloy. Compd., 545, 12–18 (2012); doi: https://doi.org/https://doi.org/10.1016/j.jallcom.2012.08.020.

  12. H.Z. Ye, and X.Y. Liu, “Review of recent studies in magnesium matrix composites, ” J. Mater. Sci, 39, No. 20, 6153-6171 (2004); doi: https://doi.org/https://doi.org/10.1023/B: JMSC.0000043583.47148.31.

  13. B.Q. Nguyen, M. Gupta, and T.S. Srivatsan, “On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B,” Mater. Sci. Eng. A, 500, Nos. 1-2, 233- 237 (2009); doi: https://doi.org/https://doi.org/10.1016/j.msea.2008.09.050.

  14. X.M. Wang, X.J. Wang, X.S. Hu, K. Wu, and M.Y. Zheng, “Processing, microstructure and mechanical properties of Ti6Al4V particles-reinforced Mg matrix composites,” Acta Metall. Sin. (Engl. Lett.), 29, No.10, 940–950 (2016); doi:https://doi.org/https://doi.org/10.1007/s40195-016-0473-3.

  15. H. Kumar, and G. P. Chaudhari, “Creep behavior of AS41 alloy matrix nano-composites”, Mater. Sci. Eng. A, 607, 435-444 (2014); doi: https://doi.org/https://doi.org/10.1016/j.msea.2014.04.020.

  16. K.K. Deng, K. Wu, X.J. Wang, Y.W. Wu, X.S. Hu, M.Y. Zheng, W.M. Gan, and H.G. Brokmeier, “Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures,” Mater. Sci. Eng. A, 527, No. 6, 1630–1635 (2010); doi: https://doi.org/https://doi.org/10.1016/j.msea.2009.10.053.

  17. A. Zulfia, Rd P. Maulana, F. Robby, M. Kirman, and A. Sukarto, “Effects of Al2O3np and Mg addition on the properties of the Al–Zr–Ce nanocomposite produced by STIR casting, as aluminium conductor,” Powder Metall. Met. Ceram., 54, Nos. 9–10, 534–542 (2016); doi: https://doi.org/https://doi.org/10.1007/s11106-016- 9746-7.

  18. Y. Yu, J. Jie, S. Zhang, J. Tu, and T. Li, “Three-layer Al/Al–B4C composite material prepared by casting and hot rolling,” Powder Metall. Met. Ceram., 54, Nos. 7–8, 390–396 (2015); doi: https://doi.org/https://doi.org/10.1007/s11106-015-9727-2.

  19. L.Y. Chen, D. Weiss, J. Morrow, J.Q. Xu, and X.C. Li, “A novel manufacturing route for production of high-performance metal matrix nanocomposites,” Manuf. Lett., 1, Nos. 2–4, 62–65 (2013); doi: https://doi.org/https://doi.org/10.1016/j.mfglet.2013.10.010.

  20. S.D. Yadav, P.P. Bhingole, G.P. Chaudhari, S.K. Nath, and C. Sommitsch, “Hybrid processing of AZ91 magnesium alloy/nano-Al2O3 composites,” Key Eng. Mater., 651653, 783–788 (2015); doi:https://doi.org/https://doi.org/10.4028/www.scientific.net/KEM.651-653.783.

  21. H.L. Shi, X.J. Wang, C.L. Zhang, C.D. Li, C. Ding, K. Wu, and X.S. Hu, “A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes,” J. Mater. Sci. Technol., 32, No. 12, 1303-1308 (2016); doi: https://doi.org/https://doi.org/10.1016/j.jmst.2016.05.014.

  22. K.B. Nie, K.K. Deng, X.J. Wang, W.M. Gan, F.J. Xu, K. Wu, and M.Y. Zheng, “Microstructures and mechanical properties of SiCp/AZ91 magnesium matrix nanocomposites processed by multidirectional forging,” J. Alloy. Compd., 622, 1018-1026 (2015); doi: https://doi.org/https://doi.org/10.1016/j.jallcom.2014.11.045.

  23. S. Golak, and M. Dyzia, “Creating local reinforcement of a channel in a composite casting using electromagnetic separation,” J. Mater. Sci. Technol., 31, No. 9, 918–922 (2015); doi: http://dx.doi.org/https://doi.org/10.1016/j.jmst.2015.07.016.

  24. L. Katsarou, M. Mounib, W. Lefebvre, S. Vorozhtsov, M. Pavese, C. Badini, J.M. Molina-Aldareguia, C.C. Jimenez, M.T. Prado, and H. Dieringa, “Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring,” Mater. Sci. Eng. A, 659, 84-92 (2016); doi: https://doi.org/https://doi.org/10.1016/j.msea.2016.02.042.

  25. S.P. Dwivedi, S. Sharma, and R.K. Mishra, “Electromagnetic stir casting and its process parameters for the fabrication and refined the grain structure of metal matrix composites–a review”, Int. J. Adv. Res. Innov., 2, No. 3, 639-649 (2014).

    Google Scholar 

  26. C.G. Kang, and S.W. Youn, “Mechanical properties of particulate reinforced metal matrix composites by electromagnetic and mechanical stirring and reheating process for thixoforming,” J. Mater. Process. Tech., 147, No. 1, 10-22 (2004); doi: https://doi.org/https://doi.org/10.1016/S0924-0136(03)00606-X.

  27. S. Mohammadi, A.H. Jabbari, and M. Sedighi, “Mechanical properties and microstructure of Mg-SiCp composite sheets fabricated by sintering and warm rolling,” J. Mater. Eng. Perform., 26, No. 7, 3410–3419 (2017); doi: https://doi.org/https://doi.org/10.1007/s11665-017-2760-1.

  28. S.F. Hassan and M. Gupta, “Effect of length scale of Al2O3 particulates on microstructural and tensile properties of elemental Mg,” Mater. Sci. Eng. A, 425, No. 1, 22-27 (2006); doi: https://doi.org/https://doi.org/10.1016/j.msea.2006.03.029.

  29. A.S. Sabet, A.H. Jabbari, and M. Sedighi, “Microstructural properties and mechanical behavior of magnesium/hydroxyapatite biocomposite under static and high cycle fatigue loading,” J. Compos. Mater., 52, No. 13, 1711–1722 (2017); doi: https://doi.org/10.1177/0021998317731822.

    Article  CAS  Google Scholar 

  30. M. Gupta, and W. L.E. Wong, “Magnesium-based nanocomposites: Lightweight materials of the future,”Mater. Charact., 105, 30–46 (2015); doi: https://doi.org/https://doi.org/10.1016/j.matchar. 2015.04.015.

  31. Q.B. Nguyen, and M. Gupta, “Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates,” J Alloy Compd., 459, Nos. 1–2, 244–250 (2008); doi: https://doi.org/https://doi.org/10.1016/j.jallcom.2007.05.038.

  32. S.Y. Zhang, S.V. Hainsworth, and S.D.A. Lawes, “Temperature dependence of low cycle fatigue behavior in AZ31 magnesium alloy,” J. Mater. Today: Proc.,2, Supp. 2, S243–S250 (2015); doi: https://doi.org/https://doi.org/10.1016/j.matpr.2015.05.034.

  33. T.S. Srivatsan, C. Godbole, and M. Paramsothy, M. Gupta., “Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy,” J. Mater. Sci., 47, 3621–3638 (2012); doi: https://doi.org/https://doi.org/10.1007/ s10853-011-6209-x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sedighi.

Additional information

Published in Poroshkova Metallurgiya, Vol. 58, Nos. 5–6 (527), pp. 144–156, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari, A., Sedighi, M. & Sabet, A. Combination of Mechanical and Electromagnetic Stirring to Distribute Nano-Sized Al2O3 Particles in Magnesium Matrix Composite. Powder Metall Met Ceram 58, 361–371 (2019). https://doi.org/10.1007/s11106-019-00087-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-019-00087-8

Keywords

Navigation