Skip to main content
Log in

High fracture toughness of powder chromium sintered in magnesium vapor

  • Sintered Metals and Alloys
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The fracture toughness of powder chromium sintered in magnesium vapor is higher by a factor of 53 than that of powder chromium sintered in hydrogen and by a factor of 5 than that of deformed low-alloy chromium VKh2K castings. This high fracture toughness is due to the skeleton formed of plastic interlayers of high-purity chromium. Chromium becomes highly ductile after fine purification in Cr–MgO alloys to remove interstitial impurities. The interlayers form on the surface of chromium powder particles under the refining action of magnesium vapor. Auger electron microscopy and data on fracture, chemical composition, and etching resistance lead to the conclusion that there are interlayers made of pure chromium. The high fracture toughness remains after annealing for 1 h at 1500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. P. Lyakishev and M. I. Gasik, Metallurgy of Chromium [in Russian], Eliz, Moscow (1999), p. 582.

    Google Scholar 

  2. A. H. Sully and E. A. Brandes, Chromium, Butterworths, London (1967).

    Google Scholar 

  3. C. T. Sims and W. C. Hagel, The Superalloys, John Wiley and Sons, New York (1972).

    Google Scholar 

  4. V. I. Trefilov and V. F. Moiseev, Dispersed Particles in Refractory Metals [in Russian], Naukova Dumka, Kyiv (1978), p. 240.

    Google Scholar 

  5. N. P. Brodnikovskii, L. S. Igolkina, V. A. Pisarenko, et al., “Influence of stress concentrators on the fracture of chromium at ductile–brittle transition,” in: Electron Microscopy and Strength of Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (1994), pp. 102–112.

  6. L. S. Igolkina, L. S. Kosachev, and B. A. Mochalov, “Influence of dynamic strain aging on the hardening parameters of low-alloyed chromium,” Metallofizika, 7, No. 4, 89–93 (1985).

    CAS  Google Scholar 

  7. D. E. Crutchley and C. N. Reid, “Mechanical properties of chromium single crystals,” in: F. Benesovsky (ed.), Proc. 6th Plansee Seminar on High Temperature Materials (June 24–28, 1968, Reutte), Springer-Verlag, New York (1969), pp. 57–66.

    Google Scholar 

  8. V. I. Trefilov, A. N. Rakitskii, N. P. Brodnikovskii, et al., “Dynamic strain aging in chromium and its alloys,” in: Structural Alloys of Chromium [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (1986), pp. 46–59.

  9. D. D. Abanin, A. I. Evstyukhin, V. P. Maslov, et al., “Metals,” Izv. AN SSSR, No. 1, 27–31 (1974).

  10. R. Wadsack, R. Pippan, and B. Schedler, “Chromium—a material for fusion technology,” Fusion Eng. Design, 5859, 743–748 (2001).

    Article  Google Scholar 

  11. D. M. Scruggs, “Chromium composites are ductile,” Mater. Design. Eng., 56, No. 7, 115–119 (1962).

    CAS  Google Scholar 

  12. G. C. Reed and W. L. Schalliol, “Chromium–magnesia composites,” J. Met., 16, No. 2, 175–179 (1964).

    CAS  Google Scholar 

  13. R. F. Decker and R. R. Dewitt, “Trends in high-temperature superalloys,” J. Met., February, 139–145 (1965).

  14. V. I. Khodkin, Powder Metallurgy [in Russian], Vysshaya Shkola, Minsk (1966), pp. 358–361.

    Google Scholar 

  15. V. S. Rakovskii, A. F. Silaev, V. I. Khodkin, and O. Kh. Faktulin, Powder Metallurgy of Creep-Rupture Resistant Alloys and Refractory Metals [in Russian], Metallurgiya, Moscow (1974), p. 195.

    Google Scholar 

  16. K. I. Portnoi and B. N. Babich, Dispersion-Hardened Materials [in Russian], Metallurgiya, Moscow (1974), p. 200.

    Google Scholar 

  17. I. M. Fedorchenko and S. M. Solonin, “The sinterability of chromium powder,” Powder Metall. Met. Ceram., 4, No. 11, 891–895 (1965).

    Article  Google Scholar 

  18. A. N. Rakitskii and V. I. Trefilov, “Optimum alloying of chromium with highly active elements. A survey,” Powder Metall. Met. Ceram., 16, No. 9, 703–711 (1977).

    Google Scholar 

  19. A. N. Volchkov, V. A. Belov, I. V. Kurkin, and A. B. Ol’shanskii, “Selection of refining additions for powder metallurgy alloys of chromium,” Powder Metall. Met. Ceram., 29, No. 3, 210–212 (1990).

    Article  Google Scholar 

  20. G. V. Samsonov and V. P. Perminov, Magnesium Reduction [in Russian], Metallurgiya, Moscow (1971), p. 176.

    Google Scholar 

  21. I. M. Fedorchenko, I. G. Slys, and L. A. Sosnovskii, “Technology of sintering of powder metallurgical materials without a circulating protective atmosphere,” Powder Metall. Met. Ceram., 11, No. 5, 361–366 (1972).

    Article  Google Scholar 

  22. I. G. Slys, V. I. Trefilov, and I. M. Fedorchenko, A Method for the Production of Sintered Dispersion-Hardened Alloys [in Russian], Inventor’s Certificate No. 633436 USSR, Byul. Izobr., No. 7 (1978).

  23. A. A. Sotnik, A. D. Vasil’ev, and I. G. Slys, “Influence of porosity on the crack resistance of brittle powder materials,” in: Electron Microscopy and Strength of Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (1989), pp. 34–40.

  24. A. D. Vasil’ev, A. A. Sotnik, S. A. Firstov, et al., “Influence of porosity on the fracture toughness of chippable materials,” in: Fracture Mechanics and Physics of Brittle Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (1990), pp. 95–100.

  25. I. V. Oryshich, N. E. Poryadchenko, I. G. Slys, et al., “Air oxidation of chromium-based composites,” Powder Metall. Met. Ceram., 56, No. 3–4, 189–193 (2007).

    Article  Google Scholar 

  26. A. N. Rakitskii and V. I. Trefilov, “Advances in the development of structural chromium alloys: Capabilities and limitations,” in: Structural Chromium Alloys [in Russian], Naukova Dumka, Kyiv (1986), pp. 5–32.

  27. O. V. Bakun, O. N. Samgina, G. F. Sarzhan, et al., “Structure and mechanical properties of sintered chromium with a magnesia addition,” Powder Metall. Met. Ceram., 20, No. 4, 279–282 (1981).

    Article  Google Scholar 

  28. N. P. Brodnikovskii, A. A. Onoprienko, V. A. Pisarenko, et al., “Structural sensitivity of the mechanical properties of chromium–nitrogen alloys after annealing,” Metallofizika, 6, No. 6, 79–84 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Brodnikovskii.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 5–6 (485), pp. 30–41, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slys, I.G., Brodnikovskii, N.P., Kossko, I.A. et al. High fracture toughness of powder chromium sintered in magnesium vapor. Powder Metall Met Ceram 51, 273–281 (2012). https://doi.org/10.1007/s11106-012-9428-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9428-z

Keywords

Navigation