Skip to main content

Advertisement

Log in

Effect of Magnesium and Calcium Addition on Carbides Characterizations and Anisotropy Ductile Fracture of Inconel 718

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Inconel 718 modified by magnesium and calcium was investigated in order to improve the ductile fracture properties of the alloy. Three different types of Inconel 718 containing 50 ppm Mg, 40 ppm Ca, and no trace elements were prepared by vacuum induction melting processes, rolled, and heat-treated. Tension and impact properties were tested at the room temperature and in the longitudinal and transverse directions. Fractographic and microstructural analyses were done by FESEM examinations. Reduction in area and impact energy was improved by 10–50% in the transverse direction, whereas strength was not changed by adding Ca and Mg. Also, these properties did not show any significant variations in longitudinal specimens. MC-type carbide was formed in solidification and rearranged as stringer during the rolling process, significantly reducing the impact energy of Inconel 718 on transverse samples. Ductile anisotropy was modified as the carbide shape and size were refined in the as-cast microstructure of Mg and Ca alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Mitchell, Primery carbidea in alloy 718, in Proceedings of the Superalloy 718 and Derivatives, ed. by E.A. Ott, R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu (Wiley, New York, 2010), pp. 161–167

    Google Scholar 

  2. S.-H. Kang, Y. Deguchi, K. Yamamoto, K. Ogi, M. Shirai, Solidification process and behavior of alloying elements in Ni-based superalloy Inconel718. Mater. Trans. 45(8), 2728–2733 (2004)

    Article  Google Scholar 

  3. Y. Zhang, Z. Li, P. Nie, Y. Wu, Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings. Opt. Laser Technol. 52, 30–36 (2013)

    Article  Google Scholar 

  4. L. Xiao, M.C. Chaturvedi, D. Chen, Effect of boron and carbon on the fracture toughness of IN 718 superalloy at room temperature and 650°C. J. Mater. Eng. Perform. 14(4), 528–538 (2005)

    Article  Google Scholar 

  5. W.-J. Zheng, X.-P. Wei, Z.-G. Song, Q.-L. Yong, F. Han, Q.-C. Xie, Effects of carbon content on mechanical properties of Inconel 718 alloy. J. Iron. Steel Res. Int. 22(1), 78–83 (2015)

    Article  Google Scholar 

  6. J. Yang, Q. Zheng, X. Sun, H. Guan, Z. Hu, Relative stability of carbides and their effects on the properties of K465 superalloy. Mater. Sci. Eng. A 429(1), 341–347 (2006)

    Article  Google Scholar 

  7. C. Joseph, M. Hornqvist, C. Persson, Anisotropy of room temperature ductility in Haynes 282 forgings, in Proceedings of the Superalloy 718 and Derivatives, ed. by E. Ott, A. Banik, X. Liu, I. Dempster, K. Heck, J. Andersson (Wiley, New York, 2014), pp. 601–609

    Google Scholar 

  8. K. Mo, G. Lovicu, X. Chen, H.-M. Tung, J.B. Hansen, J.F. Stubbins, Mechanism of plastic deformation of a Ni-based superalloy for VHTR applications. J. Nucl. Mater. 44(1), 695–703 (2013)

    Article  Google Scholar 

  9. G. Liu, D.K. Rehbein, O. Buck, Anisotropy of the fracture toughness in aged Inconel 718, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti (Plenum Press, New York, 1997), pp. 1451–1457

    Chapter  Google Scholar 

  10. G. Meetham, Trace elements in superalloys—an overview. Metals Technol. 11(1), 414–418 (1984)

    Article  Google Scholar 

  11. K. Banerjee, The role of magnesium in superalloys—a review. Mater. Sci. Appl. 2(9), 1243–1255 (2011)

    Google Scholar 

  12. G. Chen, Q. Zhu, D. Wang, X. Xie, Effects of magnesium on niobium segregation and impact toughness in cast alloy 718, in Proceedings of Superalloys 718 and Derivatives, ed. by E.A. Loria (TMS, Pennsylvania, 1989), pp. 545–551

    Google Scholar 

  13. X. Liu, J. Dong, X. Xie, K.-M. Chang, The appearance of magnesium and its effect on the mechanical properties of Inconel 718 with low sulfur content. Mater. Sci. Eng. A 303(1), 262–266 (2001)

    Article  Google Scholar 

  14. X.-C. Chen, C.-B. Shi, H.-J. Guo, F. Wang, H. Ren, D. Feng, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process. Metall. Mater. Trans. B 43(6), 1596–1607 (2012)

    Article  Google Scholar 

  15. BS EN 10247 (2007), Micrographic Examination of the Non-metallic Inclusion Content of Steels Using Standard Pictures

  16. H. Bor, C. Ma, C. Chao, The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Metall. Mater. Trans. A 31(5), 1365–1373 (2000)

    Article  Google Scholar 

  17. H. Bor, C. Chao, C. Ma, The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy. Scr. Mater. 38(2), 329–335 (1997)

    Article  Google Scholar 

  18. Y. Ono, T. Yuri, H. Sumiyoshi, E. Takeuchi, S. Matsuoka, T. Ogata, High-cycle fatigue properties at cryogenic temperatures in Inconel 718 nickel-based superalloy. Mater. Trans. 45(2), 342–345 (2004)

    Article  Google Scholar 

  19. W. Mills, L. Blackburn, Variations in fracture toughness for alloy 718 given a modified heat treatment. J. Eng. Mater. Technol. 112, 116–123 (1990)

    Article  Google Scholar 

  20. J. Zhu, Z. Cheng, H. Ye, The distribution and morphology of trace Mg at a grain boundary in a Ni-base superalloy. Scr. Mater. 23(9), 1537–1542 (1989)

    Google Scholar 

  21. Dong, J.X., Thompson, R.G., Xie, X.S.: Mult-component intergranular and interfacial segregation in alloy 718 with correlations to stress rupture behavior. In: Loria, E.A. (eds.) Proceedings of the Superalloy 718 and Derivatives, pp. 553–566. The Society, Pennsylvania (1997)

  22. A. Bhambri, T. Kattamis, J. Morral, Cast microstructure of Inconel 713C and its dependence on solidification variables. Metall. Trans. B 6(4), 523–537 (1975)

    Article  Google Scholar 

  23. B.H. Kear, Effect of uncombined calcium and magnesium on the malleability of nickel alloys, in Proceedings of Superalloys, ed. by J.J. de Barbadillo (Claitors, Baton Rouge, 1976), pp. 95–107

    Google Scholar 

  24. J. Dong, X. Xie, R. Thompson, The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys. Metall. Mater. Trans. A 31(9), 2135–2144 (2000)

    Article  Google Scholar 

  25. G. Bernard, P. Riboud, G. Urbain, Investigation of the plasticity of oxide inclusions. Rev. de Metall. 78(5), 421–433 (1981)

    Article  Google Scholar 

  26. T. Baker, K. Gave, J. Charles, Inclusion deformation and toughness anisotropy in hot-rolled steels. Metals Technol. 3(1), 183–193 (1976)

    Article  Google Scholar 

  27. A. Pineau, A.A. Benzerga, T. Pardoen, Failure of metals I: brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Teimouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimouri, J., Hosseini, S.R. & Farmanesh, K. Effect of Magnesium and Calcium Addition on Carbides Characterizations and Anisotropy Ductile Fracture of Inconel 718. Metallogr. Microstruct. Anal. 7, 268–276 (2018). https://doi.org/10.1007/s13632-018-0449-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0449-y

Keywords

Navigation