Skip to main content
Log in

Production of laminated ceramic composites based on AlN and B4C and study of their properties

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The properties of laminated ceramic systems, especially those with low-strength bonds, are discussed. It is shown that residual stresses, which depend on the physical and mechanical characteristics (such as strength, thermal expansion coefficient, thickness, intensity of interfacial interaction) and structure of the main layers and interlayers, affect the fracture behavior of composites. Laminated materials with low sensitivity to defects and strength as high as that of the main layer were produced using a number of oxygen-free refractory compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. N. Grigoriev, A. V. Koroteev, A. V. Klimenko, et al., “Structure and strength of ceramic multilayered composites in functional gradient materials and surface layers prepared by fine particle technology,” in: M.-I. Baraton (ed.), Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, Kluwer Academic Press, Dordrecht (2001), pp. 265–272.

    Google Scholar 

  2. O. N. Grigoriev, A. V. Koroteyev, A. V. Klimenko, et al., “Production and properties of laminated SiC– MeB2 ceramic,” Ogneup. Tekhn. Keram., 41, No. 1/2, 29–42 (2000).

    Google Scholar 

  3. A. Kristofersson, E. Menessier, R. Lundberg, et al., “The properties of silicon carbide laminates,” in: K. Niihara (ed.), Proc. 6th Int. Symp. Ceramic Materials and Components for Engines (October 19–23, 1997, Arita, Japan), Keirin (1998), pp. 118–123.

  4. A. G. Atkins, “Imparting strength and toughness to brittle composites,” Nature, 252, 116–118 (1974).

    Article  CAS  Google Scholar 

  5. A. G. Atkins, “Intermittent bondings for high toughness of high strength composites,” J. Mat. Sci., 10, 819– 832 (1975).

    Article  CAS  Google Scholar 

  6. J. P. Favre, “Improving the fracture energy of carbon fiber reinforced plastics by lamination promoters,” J. Mat. Sci., 12, 43–53 (1977).

    Article  Google Scholar 

  7. B. Maruyama and D. B. Gundel, “Spatially varied interfaces,” Scripta Materilia, 35, No. 3, 391–395 (1996).

    Article  CAS  Google Scholar 

  8. M.-Y. He and J. W. Hutchinson, “Crack deflection at an interface between dissimilar elastic materials,” Int. J. Sol. Struct., 25, 1053–1067 (1989).

    Article  Google Scholar 

  9. K. S. Blanks, A. Kristofersson, E. Carlstrom, and W. J. Clegg, “Crack deflection in ceramic laminates using porous interlayers,” J. Europ. Ceram. Soc., 18, 1945–1951 (1998).

    Article  CAS  Google Scholar 

  10. K. Kendall, “Transition between cohesive and interfacial failure in a laminate,” Proc. Roy. Soc., A344, 287–302 (1975).

    Google Scholar 

  11. R. W. Rice, “Microstructure dependence of mechanical behavior of ceramics,” in: R. K. MacCrone (ed.), Treatise on Materials Science and Technology, Vol. II: Properties and Microstructure, Academic Press, New York (1977).

    Google Scholar 

  12. O. V. Gorik, O. N. Grigor'ev, D. Yu. Ostrovoi, et al., “Experimental and theoretical studies on the nonlinear stress–strain state of a laminated ceramic composite,” Strength Mater., 33, No. 6. 526–534 (2001).

    Article  Google Scholar 

  13. G. V. Samsonov, Nonmetallic Nitrides [in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

  14. G. G. Gnesin, Oxygen-Free Ceramic Materials [in Russian], Tekhnika, Kyiv (1987).

    Google Scholar 

  15. A. V. Drozdov, V. V. Kutnyak, and A. N. Negovskii, “Experimental equipment for evaluation of the strength characteristics of ceramics materials,” Strength Mater., 32, No. 5, 516–523 (1999).

    Article  Google Scholar 

  16. G. A. Gogotsi and V. P. Zavada, “Certifying advanced ceramics on the basis of mechanical properties,” Strength Mater., 25, No. 1, 55–62 (1994).

    Article  Google Scholar 

  17. T. Ya. Kosolapova, T. V. Andreeva, T. S. Bartnitskaya, et al., Nonmetallic Refractory Compounds [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  18. G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  19. A. R. Andrievskii and I. I. Spivak, Strength of Refractory Compounds and Materials Thereof [in Russian], Metallurgiya, Chelyabinsk (1983).

    Google Scholar 

  20. P. S. Kislyi, M. A. Kuzenkova, N. I. Bodnaruk, and B. L. Grabchuk, Boron Carbide [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Grigorev.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 50, No. 9–10 (481), pp. 74–84, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorev, O.N., Shcherbina, O.D., Kirlas, V.N. et al. Production of laminated ceramic composites based on AlN and B4C and study of their properties. Powder Metall Met Ceram 50, 632–640 (2012). https://doi.org/10.1007/s11106-012-9369-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9369-6

Keywords

Navigation