Skip to main content
Log in

Densification dynamics of copper and iron powder billets in hot shock compaction: Simulation and analysis

  • Theory and Technology of Forming Process
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The paper presents the results from computer simulation and analysis of experimental data on the densification of copper and iron powder billets during hot shock compaction. It is established for the first time that the shear viscosity of the porous material matrix shows a stronger dependence on the initial impact velocity than the billet temperature does. The estimated activation energy of the viscous flow in the matrix is equal to 0.35 eV for copper, 0.3 eV for α-Fe, and 0.5 eV for γ-Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. G. Dorofeev, Hot Dynamic Compaction in Metal Ceramics [in Russian], Metallurgiya, Moscow (1972), p. 176.

    Google Scholar 

  2. M. S. Koval’chenko, Hot Compaction Theory for Porous Materials [in Russian], Naukova Dumka, Kiev (1980), p. 236.

    Google Scholar 

  3. M. S. Koval’chenko, “The dynamics of mechanical actions on materials. VI. Periodic and aperiodic movements of an autonomous dynamic system,” Powder Metall. Met. Ceram., 36, No. 3–4, 217–225 (1997).

    Article  CAS  Google Scholar 

  4. M. S. Koval’chenko, Yu. G. Dorofeev, L. F. Ochkas, et al., “Densification of powder materials in hot dynamic compaction,” in: Conf. Powder Metallurgy in Poland (November 7–9, 1975), Zakopane (1975), pp. 161–171.

  5. R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley, New York (1981).

    Google Scholar 

  6. M. S. Koval’chenko, “Elasticity and viscosity of isotropic porous materials,” Powder Metall. Met. Ceram., 42, No. 1–2, 81–87 (2003).

    Article  CAS  Google Scholar 

  7. V. V. Skorokhod, Rheological Basis of Sintering Theory [in Russian], Kiev (1972), p. 152.

  8. A. Angot, Complements de Mathematiques: A l’usage des Ingenieurs de l’Electrotechnique et des Telecommunications, Editions de la Revue d’Optique, Paris (1961).

    Google Scholar 

  9. G. V. Samsonov (ed.), Handbook of the Physicochemical Properties of the Elements, IFI/Plenum, New York-Washington (1968), p. 941.

    Google Scholar 

  10. K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge (1987).

    Google Scholar 

  11. J. P. Hirt and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).

    Google Scholar 

  12. D. S. Gertsriken, V. F. Mazanko, and V. M. Kal’chenko, Shock Treatment and Mass Transfer in Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1991), p. 208.

    Google Scholar 

  13. J. Friedel, Dislocations, Pergamon Press, New York (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Koval’chenko.

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 5–6 (461), pp. 13–25, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koval’chenko, M.S., Ochkas, L.F. Densification dynamics of copper and iron powder billets in hot shock compaction: Simulation and analysis. Powder Metall Met Ceram 47, 273–283 (2008). https://doi.org/10.1007/s11106-008-9016-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-008-9016-4

Keywords

Navigation