Skip to main content
Log in

Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper-nickel system

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Thermodynamic evaluation of the Cu-Ni system within the CALPHAD approach is based on values of mixing enthalpies and activities of components in liquid and solid solutions, as well as parameters of phase transformations. The excess Gibbs free energy of phases is described by the following equations: ΔGL, ex = xNi(1 − xNi)(14259 + 0.45T) J/mole for liquid alloy and ΔG(Cu, Ni), ex = xNi(1 − xNi) × × (6877.12 + 4.6T + (1–2xNi)(−2450.1 + 1.87T)) J/mole for fcc solution. For the Gibbs free energy of the (Cu, Ni) phase, the magnetic effect is described by the Hillert-Jarl method. The thermodynamic model of the system generates a self-consistent description of all thermodynamic values and phase equilibria. The calculated binodale of fcc solid solution is in satisfactory agreement with experimental data. The critical point have coordinates 605 K and xNi = 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw Hill, New York (1958).

    Google Scholar 

  2. B. D. Bastow and D. H. Kirkwood, “Solid/liquid equilibrium in the Copper-Nickel-Tin system determined by microprobe analysis,” J. Inst. Metals, 99, No. 9, 277–283 (1971).

    CAS  Google Scholar 

  3. E. A. Feest and R. D. Doherty, “The Cu-Ni equilibrium phase diagram,” J. Inst. Metals, No. 3, 102–103.

  4. B. Predel and R. Mohs, “Thermodynamische Untersuchung flussiger Nickel-Kupfer Legierungen,” Arch Eisenhut, 42, No. 8, 575–579 (1971).

    CAS  Google Scholar 

  5. E. Schurmann and E. Schultz, “Untersuchengen zum Verlauf der Liquidus und Solidus linien in den Systemen Kupfer-Mangan und Kupfer-Nickel,” Z. Metallkd., 62, No. 10, 758–762 (1971).

    Google Scholar 

  6. F. A. Shunk (ed.), Constitution of Binary Alloys, McGraw-Hill, New York (1969).

    Google Scholar 

  7. D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, et al., “Cu-Ni (copper-nickel),” in: Phase Diagrams of Binary Copper Alloys, ASM International, Ohio, OH (1994), pp. 276–286.

    Google Scholar 

  8. B. Mozer, D. T. Keating, and S. C. Moss, “Neutron measurement of clustering in the alloy CuNi [copper-nickel],” Physical Review, 175, No. 3, 868–876 (1968).

    Article  CAS  Google Scholar 

  9. M. F. Ebel, “X-ray measurements on spinodal decomposition in copper-nickel alloys,” Physica Status Solidi A, 5, No. 1, 91–94 (1971).

    Article  CAS  Google Scholar 

  10. J. Vrijen and Radelaar, “Clustering in copper-nickel alloys: a diffuse neutron-scattering studyd,” Physical Review B, 17, No. 2, 409–421 (1978).

    Article  CAS  Google Scholar 

  11. W. Wagner, R. Poerschke, A. Axmann, et al., “Neutron-scattering studies on an electron-irradiated (nickel-62)-41.4 at.% (copper-65) alloy,” Physical Review B, 21, No. 8, 3087–3099 (1980).

    Article  CAS  Google Scholar 

  12. T. Tsakalakos, “Spinodal decomposition in copper-nickel alloys by artificial composition modulation technique,” Scripta Metallurgica, 15, No. 3, 255–258 (1981).

    Article  CAS  Google Scholar 

  13. R. E. Pawel and E. E. Stansbury, “The specific heat copper, nickel and copper-nickel alloys,” J. Phys. Chem. Sol., 26, No. 3, 607–613 (1965).

    Article  CAS  Google Scholar 

  14. M. G. Benz and J. F. Elliott, High Temperature Heats of Mixing for the Liquid Copper-Tin System and the Liquid Copper-Nickel System, U.S. At. Energy Comm., NYO-4691, 1963, p. 36.

    Google Scholar 

  15. R. N. Dokken and J. F. Elliott, “Calorimetry at 1100°C to 1200°C: The copper-nickel, copper-silver, copper-cobalt systems,” Trans. Metal. Soc. AIME, 233, 1351–1358 (1965).

    CAS  Google Scholar 

  16. Abu El Hasan, Abdelazis, and A. A. Vertman, “Thermal chemistry of iron-and nickel-based melts,” Izv. AN SSSR. Metally, No. 3, 19–30 (1966).

  17. Y. Tozaki, Y. Iguchi, Ban-ya-Shiro, et al., “Heat of mixing of iron alloys,” in: Int. Symp. Met. Chemistry: Appl. errous Met. (July 19–21, 1971), Shaffield (1971), pp. 130–132.

  18. Y. Iguchi, Y. Tozaki, M. Kakizaki, et al., “Calorimetric examination of mixing heats of nickel and cobalt alloys,” J. Iron and Steel Inst. Jap., 63, 953–961 (1977).

    Google Scholar 

  19. S. Sato and O. J. Kleppa, “Enthalpies of formation of borides of iron, cobalt and nickel by solution calorimetry in liquid copper,” Metal. Trans., B13, 251–257 (1982).

    Article  Google Scholar 

  20. U. K. Stolz, I. Arpshofen, F. Sommer, et al., “Determination of the enthalpy of mixing of liquid alloys using a high-temperature mixing calorimeter,” J. Phase Equilibria, 14, No. 4, 473–478 (1993).

    Article  CAS  Google Scholar 

  21. M. A. Turchanin, S. V. Porokhnya, L. V. Belevtsov, et al., “Thermodynamic properties of liquid copper-nickel alloys,” Rasplavy, No. 4, 8–12 (1994).

  22. H. O. Samson-Himmelstjerna, “Heat content and heat of formation of molten alloys,” Z. Metallkd., 28, No. 7, 197–202 (1936).

    Google Scholar 

  23. C. W. Schultz, G. R. Zellars, S. L. Payne, et al., “Activities of copper and nickel in liquid copper-nickel alloys,” Bureau of Mines Report of Investigations, 6410, No. 4, 9 (1964).

    Google Scholar 

  24. A. D. Kulkarni and R. E. Johnson, “Thermodynamic studies of liquid copper alloys by electromotive force method. II. Copper-nickel-oxygen and copper-nickel systems,” Metal. Trans., 4, No. 7, 1723–1727 (1973).

    Article  CAS  Google Scholar 

  25. V. V. Berezutskii and G. M. Lukashenko, “Thermodynamic properties of liquid nickel-copper alloys,” Ukr. Khim. Zh., No. 10, 1029–1032 (1987).

    Google Scholar 

  26. J. Tomiska and A. Neckel, “Knudsen-cell mass spectrometry for the determination of the thermodynamic properties of liquid copper-nickel alloys,” Int. J. Mass Spectrometry and Ion Physic, 47, 223–226 (1983).

    Article  CAS  Google Scholar 

  27. O. Kubaschewski, W. A. Dench, and V. A. Genta, “A High temperature calorimeter for slow reactions,” in: The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Vol. 1, His Majesty’s Stationery Office, London (1958), pp. 1–8.

    Google Scholar 

  28. J. S. L. Leach and M. B. Bever, “On the heats of formation of copper-nickel alloys,” Trans. Met. Soc. AIME, 215, No. 4, 728–729 (1959 (1960)).

    CAS  Google Scholar 

  29. R. J. Oriani and U. K. Murphy, “Heats of formation of solid nickel-copper and nickel-gold alloys,” Acta Met., 8, 23–25 (1960).

    Article  CAS  Google Scholar 

  30. L. Elford, F. Muller, and O. Kubaschewski, “Thermodynamic properties of copper-nickel alloys,” Ber. Bunsengesellschaft, 73, 601–605 (1968).

    Google Scholar 

  31. A. A. Vecher and Ya. I. Gerasimov, “Studying the thermodynamic properties of binary metal systems with the emf method. VIII. Solid copper-nickel solutions,” Zh. Fiz. Khim., 37, No. 3, 490–498 (1963).

    CAS  Google Scholar 

  32. R. A. Rapp and F. Maak, “Thermodynamic properties of solid copper-nickel alloys,” Acta Metallurgica, 10, No. 1, 63–69 (1962).

    Article  CAS  Google Scholar 

  33. A. Kontopoulos, “Thermodynamic activities in copper-nickel-iron solid solutions,” Praktika tes Akademias Athenon, 52, No. A-D, B607–B619 (1978).

    Google Scholar 

  34. J. C. Gachon, M. Notin, C. Cunat, et al., “Enthalpy of formation and excess entropy for dulite copper-based alloys: experimental and theoretical study,” Acta Metallurgica, 28, 489–497 (1980).

    Article  CAS  Google Scholar 

  35. Z. Moser, W. Zakulski, P. Spencer, et al., “Thermodynamic investigations of solid Cu-Ni and Fe-Ni alloys and calculation of the solid state miscibility gap in the Cu-Fe-Ni system,” CALPHAD, 9, No. 3, 257–269 (1985).

    Article  CAS  Google Scholar 

  36. Ya. I. Gerasimov, A. A. Vecher, and V. A. Geiderikh, “Thermodynamic properties of solid copper-nickel and iron-cobalt solutions,” Dokl. AN SSSR, 122, 834–836 (1958).

    CAS  Google Scholar 

  37. I. Katayama, H. Shimatani, and Z. Kozuka, “Thermodynamic study of solid Cu-Ni and Ni-Mo alloys by E.M.F. measurements using solid electrolyte,” J. Jap. Inst. Met., 37, No. 5, 509–515 (1973).

    CAS  Google Scholar 

  38. L. Kaufman, “Coupled phase diagrams and thermochemical data for transition metal binary systems. III,” CALPHAD, 2, No. 2, 117–146 (1978).

    Article  CAS  Google Scholar 

  39. R. C. Sharma, “Thermodynamic Analysis of Cu-Ni System,” Trans. Indian Inst. Met., 35, 372–375 (1982).

    CAS  Google Scholar 

  40. A. A. Jansson, Thermodynamic Evaluation of the Cu-Fe-Ni System, Trita-mac 0340, Royal Institute of Technology, Stockholm (1987), pp. 1–10.

    Google Scholar 

  41. G. Inden, “Determination of chemical and magnetic interchange energies in bcc alloys. III. Application to ferromagnetic alloys,” Z. Metallkd., 68, 529–534 (1977).

    CAS  Google Scholar 

  42. M. Hillert and M. Jarl, “A model for alloying effects in ferromagnetic metals,” CALPHAD, 2, 227–238 (1978).

    Article  CAS  Google Scholar 

  43. J.-O. Andersson, T. Helander, L. Hoglund. et al., “Thermo-Calc & DICTRA, computational tools for materials science,” CALPHAD, 26, No. 2, 273–313 (2003).

    Article  Google Scholar 

  44. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, 317–425 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 9–10 (457), pp. 65–77, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchanin, M.A., Agraval, P.G. & Abdulov, A.R. Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper-nickel system. Powder Metall Met Ceram 46, 467–477 (2007). https://doi.org/10.1007/s11106-007-0073-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-007-0073-x

Keywords

Navigation