Skip to main content
Log in

Solid-State Phase Equilibria of the Cu-S System: Thermodynamic Modeling

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

All phase equilibria and thermodynamic data available in the literature on the copper sulfides high- and low-temperature chalcocite, djurleite and anilite have been critically analyzed for optimization of the solid-state phase diagram of the Cu-S system at 1 bar total pressure. A two-sublattice approach derived from a recently developed Gibbs energy model for digenite enables the consideration of the solid solution nature of both modifications of chalcocite and for the first time of djurleite. Anilite is considered as stoichiometric compound. The sulfur solubility of metallic copper is described by a substitutional approach. The obtained Gibbs energy functions for high- and low-temperature chalcocite, djurleite, anilite and copper alloy phase allow computations and predictions of phase equilibria and thermodynamic properties in good accordance with experimental data of the Cu-S solid-state system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.J. Chakrabarti and D.E. Laughlin, The Cu-S (Copper–Sulfur) System, Phase Diagrams of Binary Copper Alloys, P.R. Subramanian, Ed., ASM International, Materials Park, 1994, p 355–371

    Google Scholar 

  2. H. Rau, Defect Equilibria in Cubic High Temperature Cu-Sulfide (Digenite), J. Phys. Chem. Solids, 1967, 28(6), p 903–916

    Article  ADS  Google Scholar 

  3. H. Rau, Homogeneity Range of Cubic High Temperature Cuprous Sulfide (Digenite), J. Phys. Chem. Solids, 1974, 35(10), p 1415–1424

    Article  ADS  Google Scholar 

  4. N. Nagamori, A Thermodynamic Study of Digenite Solid Solution (Cu2-δS) at 600 to 1000 °C and a Statistical Thermodynamic Critique on General Nonstochiometry, Metall. Trans. B, 1976, 7B(1), p 67–80

    Article  ADS  Google Scholar 

  5. R.C. Sharma and Y.A. Chang, A Thermodynamic Analysis of Cu-S System, Metall. Trans., 1980, 11B(4), p 575–583

    Article  Google Scholar 

  6. A.T. Dinsdale, T.G. Chart, T.I. Barry, and J.R. Taylor, Phase Equilibria and Thermodynamic Data for the Cu-S System, High Temp. High Press., 1982, 14(6), p 633–640

    Google Scholar 

  7. B.J. Lee, B. Sundman, S.Il. Kim, and K.G. Chin, Thermodynamic Calculation on the Stability of Cu2S in Low Carbon Steels, ISIJ Int., 2007, 47(1), p 163–171

    Article  Google Scholar 

  8. P. Waldner and W. Sitte, Digenite Cu2-xS: Thermodynamic Analysis of Sulfur Activities, Chem. Mon., 2012, 143(9), p 1215–1218

    Article  Google Scholar 

  9. D. Shishin and S.A. Decterov, Critical Assessment and Thermodynamic Modeling of the Cu-O and Cu-O-S Systems, CALPHAD, 2012, 38, p 59–70

    Article  Google Scholar 

  10. T. Jantzen, K. Hack, E. Yazhenskikh, and M. Mueller, Evaluation of Thermodynamic Data and Phase Equilibria in the System Ca-Cr-Cu-Fe-Mg-Mn-S Part I: Binary and Quasi-Binary Subsystems, CALPHAD, 2017, 56, p 270–285

    Article  Google Scholar 

  11. P. Waldner, Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases, Metall. Mater. Trans. B, 2017, 48B(4), p 2157–2166

    Article  ADS  Google Scholar 

  12. J.S. Smart and A.A. Smith, Effect of P, As, S and Se on Some Properties of High Purity Cu, Trans. AIME, 1946, 166, p 144–155

    Google Scholar 

  13. W. Ruehl and E. Saur, Röntgenographische Untersuchung zum Zustandsdiagramm des Systems Cu2S-CuS (X-ray Study on the Phase Diagram of the Cu2S-CuS System), Ber.Oberhess. Ges. Natur- u. Heilk Gießen, Naturw. Abt, 1957, 28, p 35–47, in German

    Google Scholar 

  14. J. Oudar, Étude de la solubilité du soufre dans le cuivre aux températures élevées, C. R., 1959, 249(2), p 259–261, in French

    Google Scholar 

  15. V. Wehefritz, Untersuchungen am System Kupfer–Schwefel (Study on the Copper–Sulfur System), Z. Phys. Chem. NF, 1960, 26(5–6), p 339–358, in German

    Article  Google Scholar 

  16. E.H. Roseboom, An Investigation of the Cu-S System and some Natural Copper Sulfides between 25 and 700 °C, Econ. Geol., 1966, 61(4), p 641–672

    Article  Google Scholar 

  17. W.R.Cook, The Copper–Sulfur Phase Diagram, Ph.D. Thesis, Case Western Reserve University, Cleveland OH, 1971

  18. H.J. Mathieu and H. Rickert, Elektrochemische-thermodynamische Untersuchungen am System Kupfer–Schwefel bei Temperaturen T = 15–90°C (Electrochemical–Thermodynamic Investigation of the Cu-S System at Temperatures between 15 and 90°C), Z. Phys. Chem. N.F., 1972, 79(5–6), p 315–330, in German

    Article  Google Scholar 

  19. H. Luquet, F. Guastavino, J. Bougnot, and J.C. Vaissiere, Étude Du Système Cu-S Dans le Domaine Cu1.78S-Cu2.1S par Analyse Thermique Differentielle, Mater. Res. Bull., 1972, 7(9), p 955–962, in French

    Article  Google Scholar 

  20. A. Dumon, A. Lichanot, and S. Gromb, Étude Du Diagramme des Phases Du Système Cu-S Dans L’Intervalle de Compoition Cu2,000S-Cu1,960S, J. Chim. Phys., 1974, 71(3), p 407–414, in French

    Article  Google Scholar 

  21. J.C. Vaissière, F.M. Roche, and J. Bougnot, Contribution a l’Etude Du Diagramme de Phase Du System CuxS (1.75 ≤ x ≤ 2) Entre 10 °C and 200 °C, Mater. Res. Bull., 1976, 11(7), p 851–856, in French

    Article  Google Scholar 

  22. R.W. Potter, II, An Electrochemical Investigation of the System Cu-S, Econ. Geol., 1977, 72(8), p 1524–1542

    Article  Google Scholar 

  23. M.J. Ferrante, J.M. Stuve, and L.B. Pankratz, Thermodynamic Properties of Cuprous and Cupric Sulfides, High Temp. Science, 1981, 14(2), p 77–90

    Google Scholar 

  24. F. Grønvold and E.F. Westrum, Jr., Thermodynamics of Copper Sulfides I. Heat Capacity and Thermodynamic Properties of Copper(I) Sulfide, Cu2S, from 5 to 950 K, J. Chem. Thermodyn., 1987, 19(11), p 1183–1198

    Article  Google Scholar 

  25. F. Grønvold, S. Stølen, E.F. Westrum, Jr., and C.G. Galeas, Thermodynamics of Copper Sulfides III. Heat Capacities and Thermodynamic Properties of Cu1.75S, Cu1.80S, and Cu1.85S from 5 to about 700 K, J. Chem. Thermodyn., 1987, 19(2), p 1305–1324

    Article  Google Scholar 

  26. L. Cemič and O.J. Kleppa, High Temperature Calorimetry of Sulfide Systems III. Standard Enthalpies of Formation of Phases in the Systems Fe-Cu-S and Co-S, Phys. Chem. Miner., 1988, 16(2), p 172–179

    Article  ADS  Google Scholar 

  27. S. Stølen, F. Grønvold, and E.F. Westrum, Jr., Thermodynamics of Copper Sulfides IV. Heat Capacity and Thermodynamic Properties of Cu1.90S from 5 K 750 K, Cu1.95S from 5 K to 1000 K, Cu1.98S from 300 K to 1000 K, and Cu1.995S from 300 K to 750 K, J. Chem. Thermodyn., 1990, 22(1), p 1035–1057

    Article  Google Scholar 

  28. J.A. Schmidt, A.E. Sagua, and G. Lescano, Electrochemical Investigation of the Equilibria (Covelitte + Anilite) and (Covellite + Digenite), J. Chem. Thermodyn., 1998, 30(3), p 283–290

    Article  Google Scholar 

  29. C.W. Bale, E. Belisle, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage Thermochemical Software and Databases, CALPHAD, 2009, 33(2), p 295–311

    Article  Google Scholar 

  30. M.J. Buerger and B.J. Wuensch, Distribution of Atoms in High Chalcocite, Cu2S, Science, 1963, 141(3577), p 276–277

    Article  ADS  Google Scholar 

  31. H.T. Evans, Jr., Copper Coordination in Low Chalcocite and Djurlite and other Copper-Rich Sulfides, Am. Mineral., 1981, 66(7–8), p 807–818

    Google Scholar 

  32. M. Hillert and L.I. Staffanson, Regular Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24(10), p 3618–3626

    Article  Google Scholar 

  33. B. Sundman and J. Ågren, A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications, J. Phys. Chem. Solids, 1981, 42(4), p 297–301

    Article  ADS  Google Scholar 

  34. P. Waldner and A.D. Pelton, Thermodynamic Modeling of the Ni-S System, Z. Metallk., 2004, 95(8), p 672–681

    Article  Google Scholar 

  35. P. Waldner and A.D. Pelton, Thermodynamic Modeling of the Fe-S System, J. Phase Equilibria Diffus., 2005, 26(1), p 23–38

    Article  Google Scholar 

  36. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317–425

    Article  Google Scholar 

  37. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, 3rd ed., Supplement No. 1, J. Phys. Chem. Ref. Data, 1985, 14, p 1774–1777

    Google Scholar 

  38. K.C. Mills, Thermodynamic Data for Sulphides, Selenides and Tellurides, NPL, Teddington, 1974, p 244–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Waldner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldner, P. Solid-State Phase Equilibria of the Cu-S System: Thermodynamic Modeling. J. Phase Equilib. Diffus. 39, 810–819 (2018). https://doi.org/10.1007/s11669-018-0670-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0670-z

Keywords

Navigation