Skip to main content
Log in

Thermodynamic Modeling of the Co-Cu-Sn Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Co-Cu-Sn ternary system has been modeled based on reported phase equilibrium data in the literature using the CALPHAD (CALculation of PHAse Diagrams) method. The excess Gibbs energies of solution phases, including liquid, Bcc, Fcc and Hcp, are expressed by the Redlich-Kister polynomial. The two-sublattice model (Co,Cu)m(Sn)n is used to describe the solid solution of binary intermetallic compounds, i.e. CoSn3, CoSn2 Cu3Sn and βCu6Sn5 in the Co-Cu-Sn ternary system. Co3Sn2 was described using the four-sublattice model (Co,Cu,Sn)1(Cu,Sn)1(Co,Va)0.5(Co,Va)0.5. The ternary stoichiometric compound Co2Cu8Sn3 is modeled by the stoichiometric model, Co2Cu7.5Sn3. Finally, a set of self-consistent parameters which can describe the thermodynamics of the Co-Cu-Sn ternary system was obtained. Based on the calculated thermodynamic parameters, the liquidus projection and reaction scheme are also derived in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.S. Węglowski, S. Błacha, and A. Phillips, Electron Beam Welding – Techniques and Trends – Review, Vacuum, 2016, 130, p 72–92. https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  ADS  Google Scholar 

  2. H. Kuroki, K. Nezaki, T. Wakabayashi, and K. Nakamura, Application of Linear Friction Welding Technique to Aircraft Engine Parts, IHI Engineering Reviews, 2014, 47, p 40–43.

    Google Scholar 

  3. A. Anand, and A. Khajuria, Welding Processes in Marine Application: A Review, International Journal of Mechanical Engineering and Robotics Research, 2015, 2(1), p 215–225.

    Google Scholar 

  4. H.R. Kotadia, P.D. Howes, and S.H. Mannan, A Review: On the Development of Low Melting Temperature Pb-Free Solders, Microelectron. Reliab., 2014, 54(6–7), p 1253–1273. https://doi.org/10.1016/j.microrel.2014.02.025

    Article  Google Scholar 

  5. S.F. Cheng, C.M. Huang, and M. Pecht, A Review of Lead-Free Solders for Electronics Applications, Microelectron. Reliab., 2017, 75, p 77–95. https://doi.org/10.1016/j.microrel.2017.06.016

    Article  Google Scholar 

  6. N.C. Lee, Getting Ready for Lead-Free Solders, Soldering and Surface Mount Technol, 1997, 9(2), p 65–69. https://doi.org/10.1108/09540919710800656

    Article  Google Scholar 

  7. P. Sun, C. Andersson, X. Wei, Z. Cheng, Z. Lai, D. Shangguan, J. Liu. High temperature aging study of intermetallic compound formation of Sn-3.5Ag and Sn-4.0Ag-0.5Cu solders on electroless Ni (P) metallization; proceedings of the 56th Electronic Components and Technology Conference 2006, F, (2006). IEEE. https://doi/org/https://doi.org/10.1109/ECTC.2006.1645850

  8. N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, Intermetallic Growth Kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu Lead-Free Solders on Cu, Ni, and Fe-42Ni Substrates, J. Electron. Mater., 2006, 35(7), p 1581–1592. https://doi.org/10.1007/s11664-006-0152-7

    Article  ADS  Google Scholar 

  9. F. Cheng, H. Nishikawa, and T. Takemoto, Microstructural and Mechanical Properties of Sn–Ag–Cu Lead-Free Solders with Minor Addition of Ni and/or Co, J. Mater. Sci., 2008, 43, p 3643–3648. https://doi.org/10.1007/s10853-008-2580-7

    Article  ADS  Google Scholar 

  10. I.E. Anderson, B.A. Cook, J. Harringa, and R.L. Terpstra, Microstructural Modifications and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying, J. Electron. Mater., 2002, 31(11), p 1166–1174. https://doi.org/10.1007/s11664-002-0006-x

    Article  ADS  Google Scholar 

  11. Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, Effects of Cobalt on the Nucleation and Grain Refinement of Sn-3Ag-0.5Cu Solders, J. Alloys and Compound., 2016, 682, p 326–337. https://doi.org/10.1016/j.jallcom.2016.04.265

    Article  Google Scholar 

  12. M.G.M. Miranda, E. Estévez-Rams, G. Martinez, and M.N. Baibich, Phase Separation in Cu90Co10 High-Magnetoresistance Materials, Phys. Rev. B, 2003, 68, p 1014434. https://doi.org/10.1103/PhysRevB.68.014434

    Article  ADS  Google Scholar 

  13. T. Nishizawa, and K. Ishida, The Co−Cu (Cobalt-Copper) System, Bull. Alloy Phase Diagram., 1984, 5(2), p 161–165.

    Article  Google Scholar 

  14. S. Curiotto, L. Battezzati, E. Johnson, and N. Pryds, Thermodynamics and Mechanism of Demixing in Undercooled Cu–Co–Ni Alloys, Acta Mater., 2007, 55(19), p 6642–6650.

    Article  ADS  Google Scholar 

  15. Z.-K. Liu, Computational Thermodynamics and its Applications, Acta Mater., 2020, 200, p 745–792. https://doi.org/10.1016/j.actamat.2020.08.008

    Article  ADS  Google Scholar 

  16. Y.K. Chen, C.M. Hsu, S.W. Chen, C.M. Chen, and Y.C. Huang, Phase Equilibria of Sn-Co-Cu Ternary System, Metall. Mater. Trans. A., 2012, 43(10), p 3586–3595. https://doi.org/10.1007/s11661-012-1192-7

    Article  Google Scholar 

  17. J.M. Liu, W. Zhai, K. Zhou, D.L. Geng, and B.B. Wei, Thermophysical Properties and Liquid-Solid Transition Mechanisms of Ternary (Co0.5Cu0. 5)(100–x) Snx Alloys, Acta Physica Sinica, 2016, 65, p 22–228101. https://doi.org/10.7498/aps.65.228101

    Article  Google Scholar 

  18. M. Palumbo, S. Curiotto, and L. Battezzati, Thermodynamic Analysis of the Stable and Metastable Co-Cu and Co-Cu-Fe Phase Diagrams, Calphad, 2006, 30(2), p 171–178. https://doi.org/10.1016/j.calphad.2005.10.007

    Article  Google Scholar 

  19. H.Q. Dong, S. Jin, L.G. Zhang, J.S. Wang, X.M. Tao, H.S. Liu, and Z.P. Jin, Thermodynamic Assessment of the Au-Co-Sn Ternary System, J. Electron. Mater., 2009, 38(10), p 2158–2169. https://doi.org/10.1007/s11664-009-0874-4

    Article  ADS  Google Scholar 

  20. M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida, A Thermodynamic Assessment of the Co-Sn System, Calphad, 2004, 28(2), p 213–220. https://doi.org/10.1016/j.calphad.2004.08.001

    Article  Google Scholar 

  21. J.H. Shim, C.S. Oh, B.J. Lee, and D.N. Lee, Thermodynamic Assessment of the Cu-Sn System, Int. J. Mater. Res., 1996, 87(3), p 205–212. https://doi.org/10.1515/ijmr-1996-870310

    Article  Google Scholar 

  22. J.A. Wang, C.L. Liu, C. Leinenbach, U.E. Klotz, P.J. Uggowitzer, and J.F. Loffler, Experimental Investigation and Thermodynamic Assessment of the Cu-Sn-Ti Ternary System, Calphad, 2011, 35(1), p 82–94. https://doi.org/10.1016/j.calphad.2010.12.006

    Article  Google Scholar 

  23. E.A. Owen, and D.M. Jones, Effect of Grain Size on the Crystal Structure of Cobalt, Proceed. Phys. Soc. Sect. B, 1954, 67, p 456–466. https://doi.org/10.1088/0370-1301/67/6/302

    Article  ADS  Google Scholar 

  24. H.W. King, Crystal Structures of the Elements at 25° C, Bulletin of alloy phase diagrams, 1981, 2(3), p 401–402. https://doi.org/10.1007/BF02868307

    Article  Google Scholar 

  25. H. Fjellvág, and A. Kjekshus, Structural Properties of Co3Sn2, Ni3Sn2 and Some Ternary Derivatives. Acta Chemica Scandinavica, Series A: Phys. Inorgan. Chem., 1986, 40, p 23–30.

    Google Scholar 

  26. A.K. Larsson, M. Haeberlein, S. Lidin, and U. Schwarz, Single Crystal Structure Refinement and High-Pressure Properties of CoSn, J. Alloy. Compd., 1996, 240(1–2), p 79–84. https://doi.org/10.1016/0925-8388(95)02189-2

    Article  Google Scholar 

  27. M. Armbrüster, M. Schmidt, R. Cardoso-Gil, H. Borrmann, and Y. Grin, Crystal Structures of Iron Distannide, FeSn2, and Cobalt Distannide, CoSn2, Zeitschrift für Kristallographie-New Crystal Structures, 2007, 222(2), p 83–84. https://doi.org/10.1524/ncrs.2007.0033

    Article  Google Scholar 

  28. A. Lang, and W. Jeitschko, Two New Phases in the System Cobalt-tin: the Crystal Structures of α-and β-CoSn3, Z. Metallkd., 1996, 87(10), p 759–764.

    Google Scholar 

  29. J.K. Brandon, W.B. Pearson, and D.J.N. Tozer, A Single-Crystal X-ray Diffraction Study of the ζ bronze Structure, Cu20Sn6, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, 31(3), p 774–779. https://doi.org/10.1107/S0567740875003780

    Article  Google Scholar 

  30. M.H. Booth, J.K. Brandon, R.Y. Brizard, C.T. Chieh, and W.B. Pearson, γ-Brasses with F cells, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, 33(1), p 30–36. https://doi.org/10.1107/S0567740877002556

    Article  Google Scholar 

  31. S. Fürtauer, D. Li, D. Cupid, and H. Flandorfer, The Cu–Sn Phase Diagram, Part I: New Experimental Results, Intermetallics, 2013, 34, p 142–147.

    Article  Google Scholar 

  32. Y. Watanabe, Y. Fujinaga, and H. Iwasaki, Lattice Modulation in the Long-Period Superstructure of Cu3Sn, Acta Crystallogr. B, 1983, 39(3), p 306–311. https://doi.org/10.1107/S0108768183002451

    Article  Google Scholar 

  33. S. Lidin, and A.-K. Larsson, A Survey of Superstructures in Intermetallic NiAs-Ni2In-type Phases, J. Solid State Chem., 1995, 118(2), p 313–322. https://doi.org/10.1006/jssc.1995.1350

    Article  ADS  Google Scholar 

  34. A. Gangulee, G.C. Das, and M.B. Bever, An X-ray Diffraction and Calorimetric Investigation of the Compound Cu6Sn5, Metallurgical Trans., 1973, 4(9), p 2063–2066.

    Article  ADS  Google Scholar 

  35. L. Kaufman, Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems-III, Calphad, 1978, 2(2), p 117–146. https://doi.org/10.1016/0364-5916(78)90031-7

    Article  Google Scholar 

  36. M. Hasebe, and T. Nishizawa, Calculation of Phase Diagrams of the Iron-Copper and Cobalt-Copper Systems, Calphad, 1980, 4(2), p 83–100. https://doi.org/10.1016/0364-5916(80)90026-7

    Article  Google Scholar 

  37. J. Kubišta, and J. Vřešt’ál, Thermodynamics of the Liquid Co-Cu System and Calculation of Phase Diagram, J. Phase Equilibria, 2000, 21(2), p 125–129. https://doi.org/10.1361/105497100770340165

    Article  Google Scholar 

  38. M.A. Turchanin, and P.G. Agraval, Phase Equilibria and Thermodynamics of Binary Copper Systems with 3d-Metals v. Copper-Cobalt System, Powder Metallurgy and Metal Ceram., 2007, 46(1–2), p 77–89. https://doi.org/10.1007/s11106-007-0013-9

    Article  Google Scholar 

  39. M.A. Turchanin, L.A. Dreval, A.R. Abdulov, and P.G. Agraval, Mixing Enthalpies of Liquid Alloys and Thermodynamic Assessment of the Cu-Fe-Co System, Powder Metall. Met. Ceram., 2011, 50(1–2), p 98–116. https://doi.org/10.1007/s11106-011-9307-z

    Article  Google Scholar 

  40. Y. Yu, X.J. Liu, Z.P. Jiang, C.P. Wang, R. Kainuma, and K. Ishida, Thermodynamics and Liquid Phase Separation in the Cu–Co–Nb Ternary Alloys, J. Mater. Res., 2011, 25(9), p 1706–1717. https://doi.org/10.1557/JMR.2010.0223

    Article  ADS  Google Scholar 

  41. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317–425. https://doi.org/10.1016/0364-5916(91)90030-N

    Article  Google Scholar 

  42. O. Redlich, and A. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345–348.

    Article  Google Scholar 

  43. L.B. Liu, C. Andersson, and J. Liu, Thermodynamic Assessment of the Sn-Co Lead-Free Solder System, J. Electron. Mater., 2004, 33(9), p 935–939. https://doi.org/10.1007/s11664-004-0019-8

    Article  ADS  Google Scholar 

  44. G.P. Vassilev, and K.I. Lilova, Contribution to the Thermodynamics of the Co-Sn System, Arch. Metall. Mater., 2006, 51(3), p 365–375.

    Google Scholar 

  45. V. Jedličková, A. Zemanová, and A. Kroupa, The Thermodynamic Assessment of the Co-Sn System, J. Phase Equilib. Diffus., 2019, 40(1), p 21–33. https://doi.org/10.1007/s11669-018-0687-3

    Article  Google Scholar 

  46. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys, J. Electron. Mater., 2000, 29(10), p 1122–1136. https://doi.org/10.1007/s11664-000-0003-x

    Article  ADS  Google Scholar 

  47. J. Miettinen, Thermodynamic Description of the Cu-Al-Sn System in the Copper-Rich Corner, Metall. and Mater. Trans. A., 2002, 33(6), p 1639–1648. https://doi.org/10.1007/s11661-002-0173-7

    Article  Google Scholar 

  48. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Cu-Sn and Cu-Sn-Mn Systems, Metallurgical and Mater. Trans. A, 2004, 35(6), p 1641–1654. https://doi.org/10.1007/s11669-018-0687-3

    Article  ADS  Google Scholar 

  49. W. Gierlotka, S.W. Chen, and S.K. Lin, Thermodynamic Description of the Cu-Sn System, J. Mater. Res., 2007, 22(11), p 3158–3165. https://doi.org/10.1557/JMR.2007.0396

    Article  ADS  Google Scholar 

  50. J. Miettinen, Thermodynamic Description of the Cu-Fe-Sn System at the Cu-Fe Side, Calphad, 2008, 32(3), p 500–505. https://doi.org/10.1016/j.calphad.2008.06.003

    Article  Google Scholar 

  51. M. Li, Z.M. Du, C.P. Guo, and C.R. Li, Thermodynamic Optimization of the Cu-Sn and Cu-Nb-Sn Systems, J. Alloy. Compd., 2009, 477(1–2), p 104–117. https://doi.org/10.1016/j.jallcom.2008.09.141

    Article  Google Scholar 

  52. D. Li, P. Franke, S. Furtauer, D. Cupid, and H. Flandorfer, The Cu-Sn Phase Diagram part II: New Thermodynamic Assessment, Intermetallics, 2013, 34, p 148–158. https://doi.org/10.1016/j.intermet.2012.10.010

    Article  Google Scholar 

  53. H.Q. Dong, V. Vuorinen, X.M. Tao, T. Laurila, and M. Paulasto-Krockel, Thermodynamic Reassessment of Au-Cu-Sn Ternary System, J. Alloy. Compd., 2014, 588, p 449–460. https://doi.org/10.1016/j.jallcom.2013.11.041

    Article  Google Scholar 

  54. B. Sundman, H.L. Lukas, and S.G. Fries, Computational Thermodynamics: The Calphad Method. Cambridge University Press, New York, 2007.

    MATH  Google Scholar 

  55. H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, and H. Ipser, Interfaces in Lead-Free Solder Alloys: Enthalpy of Formation of Binary Ag–Sn, Cu–Sn and Ni–Sn Intermetallic Compounds, Thermochim. Acta, 2007, 459(1–2), p 34–39. https://doi.org/10.1016/j.tca.2007.04.004

    Article  Google Scholar 

  56. O.J. Kleppa, Heat of Formation of Solid and Liquid Binary Alloys of Copper with Cadmium, Indium, Tin and Antimony at 450°, J. Phys. Chem., 1956, 60(7), p 852–858. https://doi.org/10.1021/j150541a005

    Article  Google Scholar 

  57. S. Ramos De Debiaggi, C. Deluque Toro, G.F. Cabeza, and A. Fernández Guillermet, Ab Initio Comparative Study of the Cu–In and Cu–Sn Intermetallic Phases in Cu–In–Sn Alloys, J. Alloys and Compounds, 2012, 542, p 280–292. https://doi.org/10.1016/j.jallcom.2012.06.138

    Article  Google Scholar 

  58. A. Jain, P.S. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. Persson, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, APL Mater., 2013, 1, p 1011002. https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The financial supports from the National Natural Science Foundation of China (Nos. 52171024 and 51871186) and the National Key Research and Development Program of China (Materials Genome Initiative: 2017YFB0701700) are gratefully acknowledged. The authors thank the support from the High-Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, D., Wang, J. & Yan, N. Thermodynamic Modeling of the Co-Cu-Sn Ternary System. J. Phase Equilib. Diffus. 43, 214–228 (2022). https://doi.org/10.1007/s11669-022-00953-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00953-w

Keywords

Navigation