Skip to main content
Log in

Transcriptomic Insight into Aroma Pathway Genes and Effect of Ripening Difference on Expression of Aroma Genes in Different Mango Cultivars

  • Original Article
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mango is flavour-rich fruit and considered as king of fruit in India. About 578 volatile compounds have so far been identified in various cultivars. These are believed to accumulate differentially during the course of ripening. In order to understand the molecular mechanism of aroma in mango, de novo transcriptome assembly and analysis of Mangifera indica (Dashehari) were performed by Illumina sequencing. Mining of transcriptome data led to identification of major genes related to most of the genes of terpenoid, carotenoid, flavonoid, lactone, lipoxygenase, aromatic amino acid, alkaloid, and phenylpropanoid pathways, which are potentially involved in aroma biosynthesis. Comparative mRNA expression analysis in five Mango varieties (Dashehari, Banganpalli, Ratna, Mallika, and Alphonso) revealed varietal and ripening-related differences. To gain further insight into the terpenoid pathway, these genes were further studied in different tissues and developmental stages in Dashehari mango. This study is stepping stone to understand aroma pathways in different varieties of mango fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahumada I, Cairó A, Hemmerlin A, González V, Pateraki I, Bach TJ, Rodríguez-Concepción M, Campos N, Boronat A (2008) Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Funct Plant Biol 35(11):1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Report 18(2):109–115

    Article  CAS  Google Scholar 

  • Azim MK, Khan IA, Zhang Y (2014) Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome. Plant Mol Biol 85(1):193–208

  • Bach TJ, Lichtenthaler HK (1983) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59(1):50–60

    Article  CAS  Google Scholar 

  • Berardini N, Fezer R, Conrad J, Beifuss U, Carle R, Schieber A (2005) Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O-and xanthone C-glycosides, anthocyanins, and pectin. J Agric Food Chem 53(5):1563–1570

  • Bhambhani S, Lakhwani D, Gupta P, Pandey A, Dhar YV, Bag SK, Asif MH, Trivedi PK (2017) Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids. Sci Rep 7(1):5043

    Article  PubMed  PubMed Central  Google Scholar 

  • Bojorquez G, Gómez-Lim MA (1995) Peroxisomal thiolase mRNA is induced during mango fruit ripening. Plant Mol Biol 28(5):811–820

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111(4):1059–1066

  • Cane DE (1999) Sesquiterpene biosynthesis: Cyclization mechanisms. In: Cane DD (ed) Comprehensive natural products chemistry, isoprenoids including carotenoids and steroids, vol 2 

  • Carrie C, Murcha MW, Millar AH, Smith SM, Whelan J (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 63(1):97–108

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yan J, Meng X, Xu F, Zhang W, Liao Y, Qu J (2017) Molecular cloning, characterization, and functional analysis of acetyl-CoA C-acetyltransferase and mevalonate kinase genes involved in terpene trilactone biosynthesis from Ginkgo biloba. Molecules 22(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  • Chourasia A, Sane VA, Nath P (2006) Differential expression of pectate lyase during ethylene‐induced postharvest softening of mango (Mangifera indica var. Dashehari). Physiologia Plantarum 128(3):546–555

  • Chourasia A, Sane VA, Singh RK, Nath P (2008) Isolation and characterization of the MiCel1 gene from mango: ripening related expression and enhanced endoglucanase activity during softening. Plant Growth Regul 56(2):117

    Article  CAS  Google Scholar 

  • Dautt-Castro M, Ochoa-Leyva A, Contreras-Vergara CA, Pacheco-Sanchez MA, Casas-Flores S, Sanchez-Flores A, Kuhn DN, Islas-Osuna MA (2015) Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening. Front Plant Sci 6:62

  • Deshpande AB, Anamika K, Jha V, Chidley HG, Oak PS, Kadoo NY, Pujari KH, Giri AP, Gupta VS (2017) Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics. Scientific Rep 7(1):8711

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135(4):1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer JH, Maina A, Gomez ID, Cadet M, Oeljeklaus S, Schiedel AC (2009) Cloning, expression and purification of an acetoacetyl CoA thiolase from sunflower cotyledon. Int J Biol Sci 5(7):736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276(25):22901–22909

    Article  PubMed  Google Scholar 

  • Gaffe J, Bru JP, Causse M, Vidal A, Stamitti-Bert L, Carde JP, Gallusci P (2000) LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development. Plant Physiol 123(4):1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallón SMN, Elejalde-Palmett C, Daudu D, Liesecke F, Jullien F, Papon N, De Bernonville TD, Courdavault V, Lanoue A, Oudin A, Glévarec G (2017) Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus× domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth. Planta 246(1):45–60

  • Grassi S, Piro G, Lee JM, Zheng Y, Fei Z, Dalessandro G, Giovannoni JJ, Lenucci MS (2013) Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genom 14(1):781

    Article  CAS  Google Scholar 

  • Janave MT, Sharma A (2008) Spongy tissue development in Alphonso mango: association with Staphylococcus xylosus. Eur J Plant Pathol 122(3):335–348

    Article  Google Scholar 

  • Jozefczuk J, Adjaye J (2011) Quantitative real-time PCR-based analysis of gene expression. Methods Enzymol (500):99–109. Academic Press

  • Karihaloo JL, Dwivedi YK, Archak S, Gaikwad AB (2003) Analysis of genetic diversity of Indian mango cultivars using RAPD markers. J Hortic Sci Biotechnol 78(3):285–289

    Article  CAS  Google Scholar 

  • Keller Y, Bouvier F, d’Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis: evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251(1–2):413–417

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Ciesielski PN, Donohoe BS, Chapple C, Li X (2014) Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools. Plant Physiol 164(2):584–595

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kim MD, Choi JH, Kim SY, Ryu YW, Seo JH (2006) Amplification of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli. Appl Microbiol Biotechnol 72(5):982–985

    Article  CAS  PubMed  Google Scholar 

  • Kollas AK, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, Henschker D, Henne A, Steinbrecher I, Ostrovsky DN, Hedderich R (2002) Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis. FEBS Lett 532(3):432–436

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni R, Pandit S, Chidley H, Nagel R, Schmidt A, Gershenzon J, Pujari K, Giri A, Gupta V (2013) Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit. Plant Physiol Biochem 71:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ellis BE (20010 The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 127(1):230–239

  • Kumar H, Narayanaswamy P, Prasad T, Mukunda GK, Sondur S (2001) Estimation of genetic diversity of commercial mango (Mangifera indica L.) cultivars using RAPD markers. J Hortic Sci Biotechnol 76(5):529–533

  • Kuzuyama T, Takahashi S, Watanabe H, Seto H (1998) Direct formation of 2-C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose 5-phosphate by 1-deoxy-D-xylulose 5-phosphate reductoisomerase, a new enzyme in the non-mevalonate pathway to isopentenyl diphosphate. Tetrahedron Lett 39(25):4509–4512

    Article  CAS  Google Scholar 

  • Lalel HJ, Singh Z, Tan SC (2003) Aroma volatiles production during fruit ripening of ‘Kensington Pride’ mango. Postharvest Biol Technol 27(3):323–336

    Article  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45(8):976–984

    Article  CAS  PubMed  Google Scholar 

  • Leng X, Wang P, Wang C, Zhu X, Li X, Li H, Mu Q, Li A, Liu Z, Fang J (2017) Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development. Sci Rep 7(1):4216

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Wu H, Qi Q, Li H, Li Z, Chen S, Ding Q, Wang Q, Yan Z, Gai Y, Jiang X (2019) Gibberellins play a role in regulating tomato fruit ripening. Plant Cell Physiol 60(7):1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ma XW, Zhan RL, Wu HX, Yao QS, Xu WT, Luo C, Zhou YG, Liang QZ, Wang SB (2017) Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries. PLoS One 12(12):e0187487

  • Liao P, Wang H, Wang M, Hsiao AS, Bach TJ, Chye ML (2014) Transgenic tobacco overexpressing Brassica juncea HMGCoA synthase 1 shows increased plant growth, pod size and seed yield. PLoS One 9(5):e98264

  • Liu L, Li Y, She G, Zhang X, Jordan B, Chen Q, Zhao J, Wan X (2018) Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biol 18(1):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

  • Lois LM, Rodríguez-Concepción M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22(6):503–513

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Luo X, Wei Y, Bai T, Shi J, Li L, Zhang J, Wu H (2021) Chromosome-scale genome and comparative transcriptomic analysis reveal transcriptional regulators of β-carotene biosynthesis in Mango. Front Plant Sci p 2150

  • Martinkus C, Croteau R (1981) Metabolism of monoterpenes: evidence for compartmentation of l-menthone metabolism in peppermint (Mentha piperita) leaves. Plant Physiol 68(1):99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584(14):2965–2973

    Article  CAS  PubMed  Google Scholar 

  • Naik KC, Gangolly SR (1950) A monograph on classification and nomenclature of South Indian mangoes. A monograph on classification and nomenclature of South Indian mangoes.

  • Oeljeklaus S, Fischer K, Gerhardt B (2002) Glyoxysomal acetoacetyl-CoA thiolase and 3-oxoacyl-CoA thiolase from sunflower cotyledons. Planta 214(4):597–607

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Hase T (2005) Cyanobacterial non-mevalonate pathway: (E )-4-hydroxy-3-methylbut-2-enyl diphosphate synthase interacts with ferredoxin in Thermosynechococcus elongatus BP-1. J Biol Chem 280:20672–20679

    Article  CAS  PubMed  Google Scholar 

  • Pal RK (1998) Ripening and rheological properties of mango as influenced by ethrel and calcium carbide. J Food Sci Technol 35(4):358–360

    Google Scholar 

  • Pandit SS, Chidley HG, Kulkarni RS, Pujari KH, Giri AP, Gupta VS (2009a) Cultivar relationships in mango based on fruit volatile profiles. Food Chem 114(1):363–372

    Article  CAS  Google Scholar 

  • Pandit SS, Kulkarni RS, Chidley HG, Giri AP, Pujari KH, Köllner TG, Degenhardt J, Gershenzon J, Gupta VS (2009b) Changes in volatile composition during fruit development and ripening of ‘Alphonso’ mango. J Sci Food Agric 89(12):2071–2081

    Article  CAS  Google Scholar 

  • Pandit SS, Kulkarni RS, Giri AP, Köllner TG, Degenhardt J, Gershenzon J, Gupta VS (2010) Expression profiling of various genes during the fruit development and ripening of mango. Plant Physiol Biochem 48(6):426–433

    Article  CAS  PubMed  Google Scholar 

  • Pandit SS, Mitra S, Giri AP, Pujari KH, Patil BP, Jambhale ND, Gupta VS (2007) Genetic diversity analysis of mango cultivars using inter simple sequence repeat markers. Curr Sci pp.1135–1141

  • Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R (2005) Volatile components from mango (Mangifera indica L.) cultivars. J Agric Food Chem 53(6):2213–2223

  • Preethi P, Soorianathasundaram K, Subramanian KS (2014) Aroma volatile compounds of mango cultivars neelum and banganapalli. Biochem Cell Arch 14(2):421–425

    Google Scholar 

  • Ramirez JE, Zambrano R, Sepulveda B, Simirgiotis MJ (2013) Antioxidant properties and hyphenated HPLC–PDA–MS profiling of Chilean Pica mango fruits (Mangifera indica L. cv. piqueno). Molecules 19:438–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravishankar KV, Anand L, Dinesh MR (2000) Assessment of genetic relatedness among mango cultivars of India using RAPD markers. J Hortic Sci Biotechnol 75(2):198–201

    Article  CAS  Google Scholar 

  • Ribeiro SMR, Barbosa LCA, Queiroz JH, Knödler M, Schieber A (2008) Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem 110(3):620–626

  • Rohdich F, Bacher A, Eisenreich W (2004) Perspectives in anti-infective drug design. The late steps in the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. Bioorganic Chem 32(5):292–308

  • Rohdich F, Kis K, Bacher A, Eisenreich W (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 5(5):535–540

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574

    Article  CAS  PubMed  Google Scholar 

  • Sacco A, Raiola A, Calafiore R, Barone A, Rigano MM (2019) New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genom 20(1):43

    Article  Google Scholar 

  • Salvi MJ, Gunjate RT (1989) Mango breeding work in the Konkan region of Maharashtra state. Acta Hortic (Netherlands)

  • Sane VA, Chourasia A, Nath P (2005) Softening in mango (Mangifera indica cv. Dashehari) is correlated with the expression of an early ethylene responsive, ripening related expansin gene, MiExpA1. Postharvest Biol Technol 38(3):223–230

  • Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl sidechains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316(Pt 1):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seemann M, Bui BTS, Wolff M, Tritsch D, Campos N, Boronat A, Marquet A, Rohmer M (2002) Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2 - enyl diphosphate synthase (GcpE) is a [4Fe–4S] protein. Angew Chem Int Ed 41(22):4337–4339

    Article  CAS  Google Scholar 

  • Seemann M, Wegner P, Schünemann V, Bui BTS, Wolff M, Marquet A, Trautwein AX, Rohmer M (2005) Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4- hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe–4S] protein. J Biol Inorg Chem 10(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(8):869–877

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Dwivedi V, Rai A, Pal S, Reddy SGE, Rao DKV, Shasany AK, Nagegowda DA (2015) Virus-induced gene silencing of W ithania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol J 13(9):1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Singh RK, Pathak G, Goel R, Asif MH, Sane AP, Sane VA (2016) Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var.“Dashehari”) unravels ripening associated genes. Sci Rep 6:32557

  • Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genom 13(1):1–25

  • Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, Odabasi AZ, Rodríguez GR, van der Knaap E, Taylor MG, Goulet C, Mageroy MH (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22(11):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture, Agricultural Research Service (2018) USDA national nutrient database for standard reference. Release 1 April, Nutrient Data Laboratory Home Page. https://ndb.nal.usda.gov/ndb/

  • Wang P, Luo Y, Huang J, Gao S, Zhu G, Dang Z, Gai J, Yang M, Zhu M, Zhang H, Ye X (2020) The genome evolution and domestication of tropical fruit mango. Genome Biol 21(1):1–17

    Article  Google Scholar 

  • Wu HX, Jia HM, Ma XW, Wang SB, Yao QS, Xu WT, Zhou YG, Gao ZS, Zhan RL (2014) Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. J Proteom 105:19–30

    Article  CAS  Google Scholar 

  • Xue L, He Z, Bi X, Xu W, Wei T, Wu S, Hu S (2019) Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genom 20(1):1–14

    Article  Google Scholar 

  • Zaeneldeen EMA (2014) Effect of urea, gibberellic acid foliar application and pinching early panicles on productivity of “Succary Abiad” mango trees under desert conditions. Middle East J Agric Res 3(2):135–143

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Jain Irrigation Ltd., Jalgaon, for providing Alphonso, Banganpalli, Mallika, and Ratna mango samples. Research fellowship provided to GP, SD by UGC, and SR by DBT, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Garima Pathak: data curation; experiments; writing—original draft; writing—review and editing. Vidhu A Sane: conceptualization; writing—original draft; formal analysis; supervision; project administration; funding acquisition. Shivanand Suresh Dudhagi: experiment. Saumya Raizada: experiment, review.

Corresponding author

Correspondence to Vidhu A. Sane.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Aroma-related differentially expressed genes were identified from Dashehari transcriptome data.

• MVA pathway genes were pronounced as compared to MEP genes in Dashehari fruit.

• Comparative mRNA expression analysis in five Mango varieties revealed variety and zone-specific differences.

• This study shows that aroma biosynthesis is under complex variety–specific regulation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1073 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, G., Dudhagi, S.S., Raizada, S. et al. Transcriptomic Insight into Aroma Pathway Genes and Effect of Ripening Difference on Expression of Aroma Genes in Different Mango Cultivars. Plant Mol Biol Rep 41, 145–163 (2023). https://doi.org/10.1007/s11105-022-01355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-022-01355-5

Keywords

Navigation