Skip to main content
Log in

Identification of QTLs Associated with Conversion of Sucrose to Hexose in Mature Fruit of Japanese Pear

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Sweetness is the most important trait for fruit breeding and is fundamentally determined by both total and individual sugar contents. We analyzed the contents of sucrose, fructose, glucose, and sorbitol in mature fruit in an F1 population derived from crossing modern Japanese pear cultivar ‘Akizuki’ and breeding line ‘373-55’. A genetic linkage map was constructed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNP). We identified two regions associated with individual sugar contents on linkage group (LG) 1 and LG 7. The percentages of the variance in sucrose, fructose, and glucose explained by the quantitative trait loci (QTLs) were 26.6, 15.9, and 18.5%, respectively, for the region on LG 1, and 22.2, 20.0, and 9.5%, respectively, for the region on LG 7. In both regions, genotypes associated with increases in sucrose were associated with decreases in both fructose and glucose. The 1.5-LOD support intervals of the QTLs on LGs 1 and 7 include SSRs within the regions flanking acid invertase genes PPAIV3 and PPAIV1, respectively. Because acid invertase is a key enzyme in the conversion of sucrose to hexose, these are promising candidates for genes underlying those QTLs and controlling individual sugar contents. We also found one region on LG 11 that explained 21.4% of the variation in total sugar content but was not significantly associated with variation for individual sugars. The information obtained in this study will accelerate research and breeding programs to improve fruit sweetness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006

    CAS  Google Scholar 

  • Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  • Chen H, Song Y, Li L-T, Khan MA, Li X-G, Korban SS, Wu J, Zhang S-L (2015a) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Report 33:316–325

    Article  CAS  Google Scholar 

  • Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015b) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirilli M, Bassi D, Ciacciulli A (2016) Sugars in peach fruit: a breeding perspective. Hortic Res 3:15067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2005) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    Article  CAS  Google Scholar 

  • Doty T (1976) Fructose sweetness: a new dimension. Cereal Foods World 21:62–63

    Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Fernández F, Harvey N, James C (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Resour 6:1039–1041

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Peace C, Rudell D, Verma S, Evans K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breed 35:135

    Article  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu J, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Hecke K, Herbinger K, Veberic R, Trobec M, Toplak H, Stampar F, Keppel H, Grill D (2006) Sugar-, acid- and phenol contents in apple cultivars from organic and integrated fruit cultivation. Eur J Clin Nutr 60:1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Hyun TK, Eom SH, Kim JS (2011) Genomic analysis and gene structure of the two invertase families in the domesticated apple (Malus x domestica Borkh.). Plant Omics 4:391–399

    CAS  Google Scholar 

  • Iketani H, Yamamoto T, Katayama H, Uematsu C, Mase N, Sato Y (2010) Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conserv Genet 11:115–126

    Article  Google Scholar 

  • Iketani H, Katayama H, Uematsu C, Mase N, Sato Y, Yamamoto T (2012) Genetic structure of East Asian cultivated pears (Pyrus spp.) and their reclassification in accordance with the nomenclature of cultivated plants. Plant Syst Evol 298:1689–1700

    Article  Google Scholar 

  • Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arus P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11

  • Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967

    Article  CAS  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton J-M (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajiura I, Suzuki K, Yamazaki T (1975) Color chart for Japanese pear (Pyrus serotina var. culta Rehder). HortScience 10:257–258

    Google Scholar 

  • Kajiura I, Yamaki S, Omura M, Akihama T, Machida Y (1979) Improvement of sugar content and composition in fruits, and classifications of East Asian pears by the principal component analysis of sugar compositions in fruits. Jpn J Breed 29:1–12

    Article  CAS  Google Scholar 

  • Kanayama Y (2017) Sugar metabolism and fruit development in the tomato. Hortic J 86:417–425

    Article  Google Scholar 

  • Katayama H, Adachi S, Yamamoto T, Uematsu C (2007) A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Evol 54:1573–1585

    Article  CAS  Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Kikuchi A (1948) Horticulture of fruit trees, vol 1. Yokendo, Tokyo

    Google Scholar 

  • Kliewer WM (1966) Sugars and organic acids of Vitis vinifera. Plant Physiol 41:923–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kotobuki K, Saito T, Machida Y, Sato Y, Abe K, Kurihara A, Ogata T, Terai O, Nishibata T, Kozono T, Fukuda H, Kihara T, Suzuki K (2002) New Japanese pear cultivar ‘Akizuki’. Bull Natl Inst Fruit Tree Sci 1:11–21 (In Japanese with English abstract)

    Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7:e33055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriguchi T, Ishizawa Y, Sanada T (1990a) Differences in sugar composition in Prunus persica fruit and the classification by the principal component analysis. J Jpn Soc Hortic Sci 59:307–312

    Article  CAS  Google Scholar 

  • Moriguchi T, Sanada T, Yamaki S (1990b) Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. J Am Soc Hortic Sci 115:278–281

    CAS  Google Scholar 

  • Moriguchi T, Abe K, Sanada T, Yamaki S (1992) Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear. J Am Soc Hortic Sci 117:274–278

    CAS  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2012) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST–SSRs. Tree Genet Genomes 8:709–723

    Article  Google Scholar 

  • Nishio S, Hayashi T, Yamamoto T, Yamada M, Takada N, Kato H, Nishitani C, Saito T (2016a) Validation of molecular markers associated with fruit ripening day of Japanese pear (Pyrus pyrifolia Nakai) using variance components. Sci Hortic 199:9–14

    Article  CAS  Google Scholar 

  • Nishio S, Takada N, Saito T, Yamamoto T, Iketani H (2016b) Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.). BMC Genet 17:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    Article  CAS  Google Scholar 

  • Okada K, Tonaka N, Moriya Y, Norioka N, Sawamura Y, Matsumoto T, Nakanishi T, Takasaki-Yasuda T (2008) Deletion of a 236 kb region around S4-RNase in a stylar-part mutant S4 sm-haplotype of Japanese pear. Plant Mol Biol 66:389–400

    Article  CAS  PubMed  Google Scholar 

  • Ozaki K, Uchida A, Takabe T, Shinagawa F, Tanaka Y, Takabe T, Hayashi T, Hattori T, Rai AK, Takabe T (2009) Enrichment of sugar content in melon fruits by hydrogen peroxide treatment. J Plant Physiol 166:569–578

    Article  CAS  PubMed  Google Scholar 

  • Pancoast HM, Junk WR (1980) Handbook of sugars. AVI Publishing Co., Westport, pp 387–389

    Google Scholar 

  • Pangborn R (1963) Relative taste intensities of selected sugars and organic acids. J Food Sci 28:726–733

    Article  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Saito T (2016) Advances in Japanese pear breeding in Japan. Breed Sci 66:46–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, Martínez-García PJ, Blenda A, Jung S, Main D, Martínez-Gómez P (2014) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Report 32:1–18

    Article  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Silfverberg-Dilworth E, Matasci C, Van de Weg W, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel C, Costa F (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Tamura F (2006) Japanese pear. In: Jpn Soc Hort Sci (ed) Horticulture in Japan 2006. Shoukadoh Publication, Kyoto, pp. 50–58

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    Article  CAS  PubMed  Google Scholar 

  • Terakami S, Adachi Y, Iketani H, Sato Y, Sawamura Y, Takada N, Nishitani C, Yamamoto T (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50:735–741

    Article  CAS  PubMed  Google Scholar 

  • Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear ‘Housui’ identifying three homozygous genomic regions. J Jpn Soc Hortic Sci 78:417–424

    Article  CAS  Google Scholar 

  • Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N, Saito T, Yamamoto T (2014) Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes 10:853–863

    Article  Google Scholar 

  • van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus x domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen J (2009) MapQTL® 6, Software for the mapping of quantitative trait in experiment populations of diploid species. Kyazma B V, Wageningen

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica). Nat Genet 42:833–841

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007) Chemical compositional characterization of some apple cultivars. Food Chem 103:88–93

    Article  CAS  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li LT, Li M, Khan MA, Li XG, Chen H, Yin H, Zhang SL (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65:5771–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaki S (2010) Metabolism and accumulation of sugars translocated to fruit and their regulation. J Jpn Soc Hortic Sci 79:1–15

    Article  CAS  Google Scholar 

  • Yamaki S, Moriguchi T (1989) Seasonal fluctuation of sorbitol-related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J Jpn Soc Hortic Sci 57:602–607

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Wu J, Li X, Khan MA, Chen H, Korban SS, Zhang S (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Report 31:678–687

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to all the people involved in the Japanese pear breeding program at the Institute of Fruit Tree and Tea Science, NARO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sogo Nishio.

Electronic Supplementary Material

Supplementary Fig. 1

Distributions of individual sugars in an F1 population derived from crossing ‘Akizuki’ and ‘373-55’ (PDF 383 kb)

Supplementary Fig. 2

Linkage maps of ‘Akizuki’, ‘373-55’, and their integrated map. “CP” indicates that the integrated LG maps were built using the cross-pollination mode of JoinMap v. 4.1. Markers with segregation distortion are identified by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001) (PDF 380 kb)

Supplementary Fig. 3

Significant QTLs for sucrose (SUC), fructose (FRU), glucose (GLU), sorbitol (SOR), and total sugar content (TSC). “CP” indicates that the integrated maps were built using the cross-pollination mode of JoinMap v. 4.1. Marker loci and significant QTLs are shown to the right of the linkage groups. Boxes and range lines indicate 1-LOD and 1.5-LOD support intervals, respectively. Markers with segregation distortion are identified by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001) (PDF 1995 kb)

ESM 1

(XLSX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishio, S., Saito, T., Terakami, S. et al. Identification of QTLs Associated with Conversion of Sucrose to Hexose in Mature Fruit of Japanese Pear. Plant Mol Biol Rep 36, 643–652 (2018). https://doi.org/10.1007/s11105-018-1106-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1106-y

Keywords

Navigation