Skip to main content
Log in

Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Identification of markers associated with genes of interest and quantitative trait loci (QTLs), combined with high-density genetic linkage maps, can help reduce labor and costs by enabling marker-assisted selection (MAS). In this study, a dwarfing apple rootstock cultivar ‘JM7’ (Malus prunifolia × Malus pumila ‘Malling 9’) and wild apple Malus sieboldii ‘Sanashi 63’ (section Sorbomalus) were used for constructing genetic linkage maps. Here, a species from section Sorbomalus was used for the first time as a target species in a genome-wide mapping study. We also developed and mapped 137 novel-expressed sequence tag-simple sequence repeat (EST-SSR) markers. The genetic linkage maps of ‘JM7’ and ‘Sanashi 63’ consisted of 415 and 310 loci and spanned 998.0 and 981.8 cM, respectively, comparable to the reference map of Malus × domestica ‘Discovery’. A BLASTN search revealed that all of the EST-SSR sequences used in this study exhibited very high homology to one or more previously characterized apple genome contigs. Although the most homologous contigs of 89 EST-SSRs were located within the same linkage groups (LGs) identified by mapping analysis, the other 48 EST-SSRs were aligned into contigs positioned in different LGs than those identified by mapping. When search criteria were expanded to include the five most homologous contigs of each EST-SSR, at least one of the top five contigs for 15 of these 48 EST-SSRs corresponded to the LG obtained by mapping. The maps of ‘JM7’ and ‘Sanashi 63’ may be useful for analyzing important rootstock characteristics and identifying markers for MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe K, Kotoda N, Kato H, Soejima J (2011) Genetic studies on resistance to Valsa canker in apple: genetic variance and breeding values estimated from intra- and inter-specific hybrid progeny populations. Tree Genet Genomes 7:363–372

    Article  Google Scholar 

  • Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999

    Article  PubMed  CAS  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    Article  PubMed  CAS  Google Scholar 

  • Bus VGM, Chagne D, Bassett HCM, Bowatte D, Calenge F, Celton JM, Durel CE, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236

    Article  Google Scholar 

  • Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  • Costa F, van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586

    Article  Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Fernandez-Fernandez F, Evans KM, Clarke JB, Govan CL, James CM, Maric S, Tobutt KR (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Genomes 4:469–479

    Article  Google Scholar 

  • Gasic K, Gonzalez DO, Thimmapuram J, Liu L, Malnoy M, Gong G, Han Y, Vodkin LO, Aldwinckle HS, Carroll NJ, Orvis KS, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Feltus FA, Korban SS (2009a) Comparative analysis and functional annotation of a large expressed sequence tag collection of apple. Plant Genome 2:23–38

    Article  CAS  Google Scholar 

  • Gasic K, Han YP, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009b) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Hatton RG (1917) Paradise apple rootstocks. J Royal Hort Soc 42:361–399

    Google Scholar 

  • Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Amer Soc Hort Sci 128:515–520

    CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden K, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima J (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Amer Soc Hort Sci 125:398–403

    CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Luby JJ (2003) Taxonomic classification and brief history. In: Ferree DC, Warrington IJ (eds) Apples botany, production and uses. CABI Publishing, Cambridge, pp 1–14

    Chapter  Google Scholar 

  • Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Nijs APMd, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Van Ginkel MV, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Abe K (2008) Evaluation and inheritance of crown gall resistance in apple rootstocks. J Jpn Soc Hort Sci 77:236–241

    Article  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genomes 6:195–203

    Article  Google Scholar 

  • Moriya S, Iwanami H, Okada K, Yamamoto T, Abe K (2011) A practical method for apple cultivar identification and parent–offspring analysis using simple sequence repeat markers. Euphytica 177:135–150

    Article  Google Scholar 

  • Naik S, Hampson C, Gasic K, Bakkeren G, Korban SS (2006) Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome 49:959–968

    Article  PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    Article  CAS  Google Scholar 

  • Phipps JB, Robertson KR, Smith PG, Rohrer JR (1990) A checklist of the subfamily Maloideae (Rosaceae). Can J Bot 68:2209–2269

    Article  Google Scholar 

  • Pilcher RLR, Celton JM, Gardiner SE, Tustin DS (2008) Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. J Am Soc Hort Sci 133:100–106

    CAS  Google Scholar 

  • Robinson T, Fazio G, Holleran T, Aldwinckle H (2003) The Geneva series of apple rootstocks from Cornell: performance, disease resistance, and commercialization. Acta Hort 622:513–519

    Google Scholar 

  • Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, Kotobuki K (2004) Identification of parentage of Japanese pear ‘Housui’. J Jpn Soc Hort Sci 73:511–518

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Soejima J, Yoshida Y, Haniuda T, Bessho H, Tsuchiya S, Masuda T, Komori S, Sanada T, Ito Y, Sadamori S, Kashimura Y (2010) New dwarfing apple rootstocks ‘JM1’, ‘JM7’ and ‘JM8’. Bull Natl Inst Fruit Tree Sci 11:1–16

    Google Scholar 

  • van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  • van Ooijen JW (2006) JoinMap 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen, Netherlands

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. doi:10.1038/ng.654

  • Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington IJ (eds) Apples botany, production and uses. CABI Publishing, Cambridge, pp 91–124

    Chapter  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002a) Development of microsatellite markers in Japanese pear. Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002b) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    PubMed  CAS  Google Scholar 

  • Zagaja SW (1980) Performance of two apple cultivars on P. series dwarf rootstocks. Acta Hort 114:162–169

    Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Ueda of NARO Institute of Fruit Tree Science for valuable discussions and computer analysis. This work was supported by National Agriculture and Food Research Organization Research Project No. 211, “Establishment of Integrated Basis for Development and Application of Advanced Tools for DNA Marker-Assisted Selection in Horticultural Crops”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Moriya.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

Apple EST-SSRs with predicted amino acid sequences showing significant homology to Arabidopsis thaliana proteins (DOC 161 kb)

Supplementary Table 2

Homology search of EST-SSR DNA sequences to determine their chromosome and genomic locations within Apple v1.0 genome assembly (DOC 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriya, S., Iwanami, H., Kotoda, N. et al. Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs. Tree Genetics & Genomes 8, 709–723 (2012). https://doi.org/10.1007/s11295-011-0458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0458-3

Keywords

Navigation