Skip to main content
Log in

Construction of an SSR and RAD Marker-Based Genetic Linkage Map for Carnation (Dianthus caryophyllus L.)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A high-density genetic map, an essential tool for comparative genomic studies and quantitative trait locus fine mapping, can also facilitate genome sequence assembly. The sequence-based marker technology known as restriction site-associated DNA (RAD) enables synchronous, single nucleotide polymorphism marker discovery, and genotyping using massively parallel sequencing. We constructed a high-density linkage map for carnation (Dianthus caryophyllus L.) based on simple sequence repeat (SSR) markers in combination with RAD markers developed by double-digest RAD sequencing (ddRAD-seq). A total of 2404 (285 SSR and 2119 RAD) markers could be assigned to 15 linkage groups spanning 971.5 cM, with an average marker interval of 0.4 cM. The total length of scaffolds with identified map positions was 95.6 Mb, which is equivalent to 15.4 % of the estimated genome size. The generated map is the first SSR and RAD marker-based high-density linkage map reported for carnation. The ddRAD-seq pipeline developed in this study should also help accelerate genetic and genomics analyses and molecular breeding of carnation and other non-model crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Cheng YF, Wu J, Zhong Y, Liu G (2015) The first high-density genetic map construction in tree peony (Paeonia Sect. Moutan) using genotyping by specific-locus amplified fragment sequencing. PLoS One 10:e0128584

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlone PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev 12:499–510

    Article  CAS  Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    Article  CAS  PubMed  Google Scholar 

  • Li H, Kilian A, Zhou M, Wenzl P, Huttner E, Mendham N, McIntyre L, Vaillancourt RE (2010) Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 284:319–331

    Article  CAS  PubMed  Google Scholar 

  • Li C, Bai G, Chao S, Wang Z (2015) A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat. Biomed Res Int 2015:830618

    PubMed  PubMed Central  Google Scholar 

  • Onozaki T, Tanikawa N, Taneya M, Kudo K, Funayama T, Ikeda H, Shibata M (2004) A RAPD-derived STS marker is linked to a bacterial wilt (Burkholderia caryophylli) resistance gene in carnation. Euphytica 138:255–262

    Article  CAS  Google Scholar 

  • Onozaki T, Yagi M, Tanase K (2015) Selection of carnation line 806-46b with both ultra-long vase life and ethylene resistance. Hort J 84:58–68

    Article  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scovel G, Ben-Meir H, Ovadis M, Itzhaki H, Vainstein A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96:117–122

    Article  CAS  Google Scholar 

  • Shirasawa K, Hirakawa H (2013) DNA marker applications to molecular genetics and genomics in tomato. Breed Sci 63:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Hirakawa H, Isobe S (2016) Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Res. doi:10.1093/dnares/dsw004

    PubMed  PubMed Central  Google Scholar 

  • Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:747

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanase K, Nishitani C, Hirakawa H, Isobe S, Tabata S, Ohmiya A, Onozaki T (2012) Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li LT, Li M, Khan MA, Li XG, Chen H, Yin H, Zhang SL (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65:5771–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi M (2015) Recent progress in genomic analysis of ornamental plants, with a focus on carnation. Hort J 84:2–13

    Article  Google Scholar 

  • Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Japan Soc Hort Sci 75:166–172

    Article  CAS  Google Scholar 

  • Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509

    Article  CAS  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Yamaguchi H, Tanase K, Onozaki T (2013) Construction of a reference genetic linkage map in carnation (Dianthus caryophyllus L.). BMC Genomics 14:734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, Harada T, Kishimoto K, Nakayama M, Ichimura K, Onozaki T, Yamaguchi H, Sasaki N, Miyahara T, Nishizaki Y, Ozeki Y, Nakamura N, Suzuki T, Tanaka Y, Sato S, Shirasawa K, Isobe S, Miyamura Y, Watanabe A, Nakayama S, Kishida Y, Kohara M, Tabata S (2014a) Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Res 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Yamaguchi H, Tanase K, Onozaki T (2014b) Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.). Euphytica 198:175–183

    Article  CAS  Google Scholar 

  • Yamamoto T, Terakami S (2016) Genomics of pear and other Rosaceae fruit trees. Breed Sci 66:148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shingo Terakami, Institute of Fruit Tree and Tea Science, NARO, who gave us helpful advice and provided data processing support. We are grateful to Miss Y. Yamazaki and Miss M. Nakazawa for technical assistance. This work was funded by a genome-support grant from the National Institute of Agrobiological Sciences (NIAS), JSPS KAKENHI (grant no. 26850022) and a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Genomics-based Technology for Agricultural Improvement, DHR4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yagi.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 122 kb)

ESM 2

(PDF 386 kb)

ESM 3

(PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, M., Shirasawa, K., Waki, T. et al. Construction of an SSR and RAD Marker-Based Genetic Linkage Map for Carnation (Dianthus caryophyllus L.). Plant Mol Biol Rep 35, 110–117 (2017). https://doi.org/10.1007/s11105-016-1010-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1010-2

Keywords

Navigation