Skip to main content
Log in

A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Plant growth and productivity are inhibited by environmental stresses such as drought, salinity, and cold. NAC transcription factors play essential roles in response to the stresses. Chickpea (Cicer arietinum L.) is an important legume crop, which has strong resistance to abiotic stresses. In this study, a chickpea NAC gene, CarNAC6, was isolated and functionally characterized. CarNAC6 is a member of TERN subfamily, which contains a typical NAC conserved domain located in the N-terminal region and a transactivation activity region in the C-terminal region. Subcellular localization of CarNAC6-GFP fusion protein indicated that CarNAC6 protein is a nuclear protein. In the yeast assay system, CarNAC6 acts as a transcriptional activator, and its transactivation domain is located in the C-terminus. Electrophoretic mobility shift assay and yeast one-hybrid assay indicated that CarNAC6 can bind to CGT[G/A]. Overexpression of CarNAC6 in transgenic Arabidopsis confers enhanced tolerance to drought and promotes root growth under salt stress. Moreover, CarNAC6 overexpression plants are hypersensitive to ABA during root growth stage. All these results suggested that CarNAC6 functions as a stress-responsive NAC-type transcription factor in chickpea and has potential for utilization in stress-tolerance engineering in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

cDNA:

DNA complementary to RNA

MeJA:

Jasmonic acid

ORF:

Open reading frame

P:

Probe

PCR:

Polymerase chain reaction

PM:

Mutant probe

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcription polymerase chain reaction

X-α-Gal:

5-Bromo-4-chloro-3-indolyl β-α-D-galactopyranoside

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr Opin Plant Biol 9(2):180–188

    Article  CAS  PubMed  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7(2):202–209

    Article  CAS  PubMed  Google Scholar 

  • Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang J, Wu XY, Sun JQ, Xie Q, Li CY (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18(7):756–767

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Romagosa M, Jana I, Srivastava JP, McCaig TN (1989) Relationship of excised-leaf water loss rate and yield of durum wheat in diverse environments. Can J Plant Sci 69:1075–1081

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dhanda SS, Sethi GS (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39–47

    Article  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50(2):237–248

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18(17):4689–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280(6):547–563

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  CAS  PubMed  Google Scholar 

  • Gao WR, Wang XS, Liu QY, Peng H, Chen C, Li JG, Zhang JS, Hu SN, Ma H (2008) Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochem Biophys Res Commun 376(3):578–583

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916

    Article  CAS  PubMed  Google Scholar 

  • Hibara K, Takada S, Tasaka M (2003) CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J 36(5):687–696

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67(1−2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56(6):867–880

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O′Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochem J 426(2):183–196

    Article  CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ, Kim KE, Kim SH, Lim CO, Yun DJ, Lee SY, Chung WS (2007a) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282(50):36292–36302

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Kim SY, Park CM (2007b) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226(3):647–654

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18(4):263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31(9):1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63(8):2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movahedi A, Zhang JX, Yin TM, Zhuge Q (2015) Functional Analysis of Two Orthologous NAC Genes, CarNAC3, and CarNAC6 from Cicer arietinum, Involved in Abiotic Stresses in Poplar. Plant Mol Biol Rep 33:1539–1551

    Article  CAS  Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Simon CJ (1994) Potential for wild species in cool season food legume breeding. Euphytica 73:109–114

    Article  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101(16):6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18(11):2929–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plant. J Biol Chem 283(19):13407–13417

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169(4):785–797

    Article  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009a) A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166(17):1934–1945

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H (2009b) Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally and stress regulated. Plant Physiol Biochem 47(11-12):1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Yu XW, Cheng HY, Shi QH, Zhang H, Li JG, Ma H (2010) Cloning and characterization of a novel NAC family gene CarNAC1 from Chickpea (Cicer arietinum L.). Mol Biotechnol 44(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro GL, Marques CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP (2009) Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444(1–2):10–23

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Ocampo B, Robertson LD (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Ev 45:9–17

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007) Co-expression of the stress-inducible zinc finger chomeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49(1):46–63

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F (2007) Legume transcription factors: Global regulators of plant development and response to the environment. Plant Physiol 144(2):538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60(15):4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131(4):915–922

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19(11):1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14(23):3024–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP (2005) A CELD-fusion method for rapid determination of the DNA binding sequence specificity of novel plant DNA-binding proteins. Plant J 41(4):638–649

    Article  CAS  PubMed  Google Scholar 

  • Yang XW, Wang XY, Ji L, Yi ZL, Fu CX, Ran JC, Hu RB, Zhou GK (2014) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34(6):943–958

    Article  Google Scholar 

  • Yu XW, Peng H, Liu YM, Zhang Y, Shu YJ, Chen QJ, Shi SB, Ma L, Ma H, Zhang H (2014) CarNAC2, a novel NAC transcription factor in chickpea (Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic Arabidopsis. J Plant Biol 57:55–66

    Article  CAS  Google Scholar 

  • Yu XW, Liu YM, Wang S, Tao Y, Wang ZK, Shu YJ, Peng H, Ma H (2015) CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep 35:613–627

    Article  PubMed  Google Scholar 

  • You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L (2013) The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64(2):569–583

    Article  CAS  PubMed  Google Scholar 

  • Zhang DZ, Wang PH, Zhao HX (1990) Determination of the content of free proline in wheat leaves. Plant Physiol Commun 4:62–65

    Google Scholar 

  • Zheng XN, Chen B, Lu GJ, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhong RQ, Lee CH, Ye ZH (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 3(6):1087–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the projects supported by the National Natural Science Foundation of China (31160306 and 30860152) and from the project supported by the Xinjiang Science and Technology Department of China (200991254) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ma.

Additional information

Yanmin Liu and Xingwang Yu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, X., Liu, S. et al. A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis . Plant Mol Biol Rep 35, 83–96 (2017). https://doi.org/10.1007/s11105-016-1004-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1004-0

Keywords

Navigation