Skip to main content
Log in

Mobilization of Diverse Transposable Elements in Rice Induced by Alien Pollination Without Entailing Genetic Introgression

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are major components of eukaryotic genomes and have played important roles in genome evolution. Plant introgressive hybridization is widespread in nature and may induce a wide range of genetic and epigenetic variations including reactivation of dormant TEs. Newly elicited TE transpositions may lead to heritable expression alteration in genes adjacent to excision and insertion sites and consequently to phenotypic novelty. Prior studies showed that distant hybridization between sexually incompatible plant species might cause reactivation of TEs. However, these studies used plants with confirmed alien genetic introgression, so it remains unclear whether the cause of TE activation is introgression or the alien pollination process itself. We pollinated rice stigma (Oryza sativa L., cv. Jijing88) with Zizania latifolia pollen. Immediate offspring and subsequent generations were self-fertilized. We conducted whole-genome resequencing on a derivative line that showed heritable phenotypic variations in plant height and grain characteristics. No genetic introgression from the pollen donor was observed, but transpositional reactivation of otherwise quiescent rice endogenous TEs was detected. In total, 33 de novo mobilization events occurred involving 13 TEs, namely a MITE mPing, Pong (the transposase-donor of mPing), and 11 LTR retrotransposons. Transpositions were verified by locus-specific polymerase chain reaction amplification and Southern analysis. Gene expression analysis suggested that at least some of the mobilized TEs caused heritable expression changes in neighboring genes, including genes that mapped to quantitative trait loci (QTLs) associated with grain weight and size. Thus, pollination by Zizania without entailing introgression can induce mobilization of endogenous TEs and cause heritable gene expression alterations. Our results suggest that pollination by related but sexually incompatible species may generate genetic and phenotypic novelty via modifications induced by enhanced mobility of TEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed I, Sarazin A, Bowler C, Colot V, Quesneville H (2011) Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res 39:6919–6931

  • Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson W (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  CAS  PubMed  Google Scholar 

  • Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261

    Article  Google Scholar 

  • Bejerano G, Lowe CB, Ahituv N et al (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bourque G, Leong B, Vega VB et al (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brennan AC, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ (2009) Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717

    Article  PubMed  Google Scholar 

  • Carr J, Xu M, Dudley JW, Korban SS (2003) AFLP analysis of genetic variability in New Guinea impatiens. Theor Appl Genet 106:1509–1516

    CAS  PubMed  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaparro C, Guyot R, Zuccolo A, Piégu B, Panaud O (2007) RetrOryza: a database of the rice LTR-retrotransposons. Nucleic Acids Res 35:D66–D70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S-Q, Zhong W, Liu M-X, Xie Z-W, Wang H-H (2008) Pollen grain germination and pollen tube growth in pistil of rice. Rice Sci 15:125–130

    Article  CAS  Google Scholar 

  • Dong Z, Wang Y, Zhang Z et al (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Melnyk C, Molnar A, Slotkin RK (2013) Plant Mobile Small RNAs. Cold Spring Harbor Perspectives in Biology 5

  • Flavell R (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc B Biol Sci 312:227–242

    Article  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

  • Gao L, Mccarthy EM, Ganko EW, Mcdonald JF (2004) Evolutionary history of Oryza sativa LTR retrotransposons: A preliminary survey of the rice genome sequences. BMC Genomics 5

  • Guerreiro MPG (2012) What makes transposable elements move in the Drosophila genome. Heredity 108:461–468

  • Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat—Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Hedges D, Deininger P (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res Fundam Mol Mech Mutagen 616:46–59

    Article  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Xie X, Lander ES (2006) A large family of ancient repeat elements in the human genome is under strong selection. Proc Natl Acad Sci U S A 103:2740–2745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kantama L, Junbuathong S, Sakulkoo J, De Jong H, Apisitwanich S (2013) Epigenetic changes and transposon reactivation in Thai rice hybrids. Mol Breeding 31:815–827

    Article  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(10):164–166

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 94:7704–7711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Long L, Shan X, Zhang S, Shen S and Liu B (2006) In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. J Exp Bot 57(10):2313–2323

  • Liu B, Piao H, Zhao F, Zhao J, Liu Z, Huang B (1999a) DNA methylation changes in rice induced by Zizania latifolia (Griseb.) DNA introgression. Hereditas 131:75–78

    Article  CAS  Google Scholar 

  • Liu B, Piao HM, Zhao FS, Zhao JH, Zhao R (1999b) Production and molecular characterization of rice lines with introgressed traits from a wild species Zizania latifolia (Griseb.). J Genet Breed 53:279–284

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43:874–880

    Article  CAS  PubMed  Google Scholar 

  • Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Wang Y, Shen Y, Guo W, Hao S, Liu B (2004) Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol 54:571–582

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lowe CB, Bejerano G, Haussler D (2007a) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci 104:8005–8010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe CB, Bejerano G, Haussler D (2007b) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci U S A 104:8005–8010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mccarthy EM, Liu J, Lizhi G, Mcdonald JF (2002) Long terminal repeat retrotransposons of Oryza sativa. Genome biology 3

  • Mcclintock B (1983) The significance of responses of the genome to challenge. Physiology Or Medicine Literature Peace Economic Sciences, 180

  • Muller K, Heller H, Doerfler W (2001) Foreign DNA integration. Genomewide perturbations of methylation and transcription in the recipient genomes. J Biol Chem 276(17):14271–14278

  • Naito K, Zhang F, Tsukiyama T et al (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–U232

    Article  CAS  PubMed  Google Scholar 

  • O’neill RJW, O’neill MJ, Graves JM (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci U S A 92:8050–8054

  • Remus R, Kämmer C, Heller H, Schmitz B, Schell G, Doerfler W (1999) Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences. J Virol 73:1010–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. Hybrid zones and the evolutionary process, 70–109

  • Sabot F, Picault N, El‐Baidouri M et al (2011) Transpositional landscape of the rice genome revealed by paired‐end mapping of high‐throughput re‐sequencing data. The Plant Journal 66:241–246

    Article  CAS  PubMed  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Liu Z, Dong Z et al (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

  • Shapiro JA (2010) Mobile DNA and evolution in the 21st century. Mobile DNA 1

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Lu B, Zhu Y, Chen J (2002) Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytol 153:289–296

  • Teramoto S, Tsukiyama T, Okumoto Y, Tanisaka T (2014) Early embryogenesis-specificeExpression of the rice transposon Ping enhances amplification of the MITE mPing. Plos Genetics 10

  • Van De Lagemaat LN, Landry J-R, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  Google Scholar 

  • Wang H, Chai Y, Chu X et al (2009) Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability. BMC Plant Biol 9:63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HY, Tian Q, Ma YQ et al (2010a) Transpositional reactivation of two LTR retrotransposons in rice‐Zizania recombinant inbred lines (RILs). Hereditas 147:264–277

  • Wang N, Wang H, Wang H et al (2010b) Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biol 10:190

  • Wang X, Weigel D, Smith LM (2013a) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9:e1003255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y-M, Dong Z-Y, Zhang Z-J et al (2005) Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170:1945–1956

  • Wang Z-H, Zhang D, Bai Y et al (2013b) Genomewide variation in an introgression line of rice-zizania revealed by whole-genome re-sequencing. PLoS One 8:e74479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. In. Plant molecular evolution. Springer, 225–49

  • Yang X, Yu Y, Jiang L, Lin X, Zhang C, Ou X, Kenji Osabe, Liu B (2012) Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the Topoisomerase II inhibitor, Etoposide, in rice. BMC Plant Biol 12:48

Download references

Acknowledgments

This work was supported by the State Key Basic Research and Development Plan of China (2011CB100205, 2013CBA01404), National Natural Science Foundation of China (No. 30970232 & 31170208), Morden Seed Industry Development Special Fund and the Programme for Introducing Talents to Universities (B07017), and Graduate Student Innovation Fund (12SSXT130).

Author Contributions

XYL and YZD conceived and designed the experiments. WY, JTT, SS, WJ, WZH, ZD, LN, XCM, and LXY performed the experiments. BL contributed reagents/materials/analysis tools. WY, SY, and YZD wrote the paper.

Conflict of Interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuyun Lin or Yuzhu Dong.

Additional information

Ying Wu, Tingting Jiang, and Yue Sun contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers used for locus-specific PCR amplification. (DOC 38 kb)

Table S2

Primers used to generate probes for Southern analysis. (DOC 32 kb)

Table S3

Primers used for qRT-PCR analysis. (DOC 35 kb)

Table S4

Positioning of TE insertion and excision. (DOC 72 kb)

Table S5

Primers used to amplify fragments of SSR and the chromosomal information. (DOC 162 kb)

Table S6

AFLP adapters/primers list. (DOC 45 kb)

ESM 1

(GIF 86 kb)

(TIFF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Jiang, T., Sun, Y. et al. Mobilization of Diverse Transposable Elements in Rice Induced by Alien Pollination Without Entailing Genetic Introgression. Plant Mol Biol Rep 33, 1181–1191 (2015). https://doi.org/10.1007/s11105-014-0819-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0819-9

Keywords

Navigation