Skip to main content
Log in

The Sophora Alopecuroid H + -PPase Gene SaVP1 Confers Multiple Abiotic Stress Tolerance in Arabidopsis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The physiological role of a vacuolar H+-PPase (SaVP1) from an eremophyte, Sophora alopecuroid, was evaluated through overexpressing in Arabidopsis. Overexpression of SaVP1 in Arabidopsis enhanced tolerance to drought and salt stresses and resulted in the up-regulation of several K+ and Ca2+ channel/ transporters genes, which showed a function similar to that of vacuolar H+-PPase from other plants. Moreover, the transgenic plants showed higher temperature tolerance than wild type plants, and had a higher seed yield. Overexpression of SaVP1 could improve the content of indole-3-acetic acid (IAA) in floral organs under high-temperature stress. Meanwhile, the application of IAA in low concentration led to higher fertility in the SaVP1-overexpressing plants under high temperature. These results indicate that SaVP1 might activate the auxin biosynthesis and signaling pathway in Arabidopsis to improve tolerance to heat. SaVP1 from an eremophyte could also be applied as a candidate gene for enhancing multiple stress tolerance in other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a–j
Fig. 3a–f
Fig. 4a–f

Similar content being viewed by others

Abbreviations

SOD:

Superoxide dismutase

POD:

Peroxidases

MDA:

Malondialdehyde

IAA:

Indole-3-acetic acid

References

  • Bassil E, Tajima H, Liang YC et al (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catalá R, Santos E, Alonso JM et al (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Article  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong QL, Liu DD, An XH et al (2011) MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol 168:2124–2133

    Article  CAS  PubMed  Google Scholar 

  • Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Tanaka Y (2006) Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+ -inorganic pyrophosphatase, H+ -ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol Biochem 44:351–358

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Gao Q, Duan X et al (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S et al (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK et al (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebaudy A, Véry A-A, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang H, Peer WA et al (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang Y, Wang N et al (2011) Cloning of a vacuolar H+-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742

    CAS  PubMed  Google Scholar 

  • Lv SL, Lian LJ, Tao PL et al (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Pasapula V, Shen G, Kuppu S et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Perez-Castineira JR, Lopez-Marques RL, Losada M et al (2001) A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima. FEBS Lett 496:6–11

    Article  CAS  PubMed  Google Scholar 

  • Qu GQ, Liu X, Zhang YL et al (2009) Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. Planta 229:1269–1279

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Sakata T, Oshino T, Miura S et al (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan J, Tu L, Deng F et al (2012) Exogenous Jasmonic acid inhibits cotton fiber elongation. J Plant Growth Regul 31(4):599–605

    Article  CAS  Google Scholar 

  • Tu LL, Zhang XL, Liang SG et al (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320

    Article  CAS  PubMed  Google Scholar 

  • Vile D, Pervent M, Belluau M et al (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35:702–718

    Article  PubMed  Google Scholar 

  • Wang Y, Jin S, Wang M, Zhu L, Zhang X (2013) Isolation and characterization of a conserved domain in the eremophyte H+-PPase fmaily. Plos ONE 8(7):e7099. doi: 10.1371/journal.pone.0070099

  • Yang H, Knapp J, Koirala P et al (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Wu KL, Xue DW (2009) Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes. J Zhejiang Univ (Agric Life Sci) 35(3):315–320

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK, Qiu QS, Guo Y et al (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by the Project from Ministry of Agriculture of China (2013ZX08005-004) and the open funds of the National Key Laboratory of Crop Genetic Improvement (200902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfu Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers used in this research. (XLSX 12 kb)

Figure S1

The sequence of SaVP1 from Sophora alopecuroides. (JPEG 2116 kb)

Figure S2

Relative transcript level of SaVP1 in leaves and roots of Sophora alopecuroides after 0.5 M NaCl treatment for 0h, 4 h, 8h, and 12h, respectively. (JPEG 248 kb)

Figure S3

The biomass of the two transgenic lines and WT plants under the control condition and after drought and salt stress treatments. (JPEG 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jin, S., Min, L. et al. The Sophora Alopecuroid H + -PPase Gene SaVP1 Confers Multiple Abiotic Stress Tolerance in Arabidopsis. Plant Mol Biol Rep 33, 923–930 (2015). https://doi.org/10.1007/s11105-014-0801-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0801-6

Keywords

Navigation