Skip to main content
Log in

miRNA-Mediated Posttranscriptional Regulation of Gene Expression in ABR17-Transgenic Arabidopsis thaliana Under Salt Stress

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small endogenous RNAs conserved in eukaryotic organisms including plants. They suppress gene expression posttranscriptionally in many different biological processes. Previously, we reported salinity-induced changes in gene expression in transgenic Arabidopsis thaliana plants that constitutively expressed a pea abscisic acid-responsive (ABR17) gene. In the current study, we used microarrays to investigate the role of miRNA-mediated posttranscriptional gene regulation in these same transgenic plants in the presence and absence of salinity stress. We identified nine miRNAs that were significantly modulated due to ABR17 gene expression and seven miRNAs that were modulated in response to salt stress. The target genes regulated by these miRNAs were identified using sRNA target Base (starBase) degradome analysis and through 5′-RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE). Our findings revealed miRNA–mRNA interactions comprising regulatory networks of auxin response factor (ARF), argonaute 1 (AGO1), dicer-like proteins 1 (DCL1), SQUAMOSA promoter binding (SPB), NAC, APETALA 2 (AP2), nuclear factor Y (NFY), RNA-binding proteins, A. thaliana vacuolar phyrophosphate 1 (AVP1), and pentatricopeptide repeat (PPR) in ABR17-transgenic A. thaliana, which control physiological, biochemical, and stress signaling cascades due to the imposition of salt stress. Our results are discussed within the context of the effect of the transgene, ABR17, and the roles of miRNA expression may play in mediating plant responses to salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accerbi M, Schmidt SA, De Paoli E, Park S, Jeong DH, Green PJ (2010) Methods for isolation of total RNA to recover miRNAs and other small RNAs from diverse species. Methods Mol Biol 592:31–50

    Article  PubMed  CAS  Google Scholar 

  • Agarwal P, Bhatt V, Singh R, Das M, Sopory SK, Chikara J (2013) Pathogenesis-related gene, JcPR-10a from Jatropha curcas exhibit RNase and antifungal activity. Mol Biotechnol 54:412–425

    Article  PubMed  CAS  Google Scholar 

  • Arif A, Zafar Y, Arif M, Blumwald E (2012) Improved growth, drought tolerance, and ultrastructural evidence of increased turgidity in tobacco plants overexpressing Arabidopsis Vacuolar Pyrophosphatase (AVP1). Mol Biotechnol 54:379–392

    Article  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M et al (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249

    Article  PubMed  CAS  Google Scholar 

  • Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G et al (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62:5561–5570

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J et al (2010) Cell signaling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L et al (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8:e59423

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Gelfond JA, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 10:407

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896

    Article  PubMed  CAS  Google Scholar 

  • de Lima JC, Loss-Morais G, Margis R (2012) MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet Mol Biol 35:1069–1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Vescovo V, Meier T, Inga A, Denti MA, Borlak JA (2013) Cross-platform comparison of Affymetrix and Agilent microarrays reveals discordant miRNA expression in lung tumors of c-Raf transgenic mice. PLoS One 8:e78870

    Article  PubMed  PubMed Central  Google Scholar 

  • Dello Ioio R, Galinha C, Fletcher AG, Grigg SP, Molnar A, Willemsen V et al (2012) A PHABULOSA/Cytokinin Feedback Loop Controls Root Growth in Arabidopsis. Curr Biol 22:1699–1704

    Article  PubMed  CAS  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dunfield K, Srivastava S, Shah S, Kav N (2007) Constitutive expression of ABR17 cDNA enhances germination and promotes early flowering in Brassica napus. Plant Sci 173:521–532

    Article  CAS  Google Scholar 

  • Fernandes H, Michalska K, Sikorski M, Jaskolski M (2013) Structural and functional aspects of PR-10 proteins. FEBS J 280:1169–1199

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129:967–973

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J et al (2010) Systematic comparsion of microarray profiling, real time PCR and next generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K et al (2009) Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol Genet Genomics 281:55–66

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    Article  PubMed  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  PubMed  CAS  Google Scholar 

  • He M, Xu Y, Cao J, Zhu Z, Jiao Y, Wang Y, Guan X et al (2013) Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma 250:129–140

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P et al (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jung HJ, Kim MK, Kang H (2013) An ABA-regulated putative RNA-binding protein affects seed germination of Arabidopsis under ABA or abiotic stress conditions. J Plant Physiol 170:179–184

    Article  PubMed  CAS  Google Scholar 

  • Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M et al (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S et al (2013) Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One 8:e52517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T (2011) EDL3 is an F-box protein involved in the regulation of abscisic acid signaling in Arabidopsis thaliana. J Exp Bot 62:5547–5560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krishnaswamy SS, Srivastava S, Mohammadi M, Rahman MH, Deyholos MK, Kav NN (2008) Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. BMC Plant Biol 8:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnaswamy S, Verma S, Rahman MH, Kav NNV (2011) Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 75:107–127

    Google Scholar 

  • Kumimoto RW, Siriwardana CL, Gayler KK, Risinger JR, Siefers N, Holt BF 3rd (2013) NUCLEAR FACTOR Y transcription factors have both opposing and additive roles in ABA-mediated seed germination. PLoS One 8:e59481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Larue CT, Wen J, Walker JC (2009) A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant J 58:450–463

    Article  PubMed  CAS  Google Scholar 

  • Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W (2012) Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li YJ, Fang Y, Fu YR, Huang JG, Wu CA, Zheng CC (2013) NFYA1 is involved in regulation of post germination growth arrest under salt stress in Arabidopsis. PLoS One 8:e61289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Q, Feng Y, Zhu Z (2009) Dicer-like (DCL) proteins in plants. Funct Integr Genomics 9:277–286

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mao W, Li Z, Xia X, Li Y, Yu JA (2012) Combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS One 7:e33040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M et al (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P et al (2011) Expression of an Arabidopsis vacuolar H + -pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fiber yield in the field conditions. Plant Biotechnol 9:88–99

    Article  CAS  Google Scholar 

  • Pierre-Jerome E, Moss BL, Nemhauser JL (2013) Tuning the auxin transcriptional response. J Exp Bot 64:2557–2563

    Article  PubMed  CAS  Google Scholar 

  • Pritchard CC, Cheng HH, Tewari M (2012) microRNA profiling: approaches and considerations. Nature Rev Genet 13:358–369

    Article  PubMed  CAS  Google Scholar 

  • Sato F, Tsuchiya S, Terasawa K, Tsujimoto G (2009) Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4:e5540

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel d (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517-527

  • Scmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L et al (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38

    Article  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srivastava S, Fristensky B, Kav NN (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physio 45:1320–1324

    Article  CAS  Google Scholar 

  • Srivastava S, Rahman MH, Shah S, Kav NN (2006) Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana. Plant Biotechnol J 4:529–549

    PubMed  CAS  Google Scholar 

  • Srivastava S, Emery RJN, Rahman MH, Kav NNV (2007) A crucial role for cytokinins in pea ABR17-mediated enhanced germination and early seedling growth of Arabidopsis thaliana under saline and low temperature stresses. J Plant Growth Reg 26:26–37

    Article  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N et al (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Varkonyi-Gasic E, Hellens RP (2011) Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol 744:145–157

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation are crucial for plant development. Genes Dev 18:1187–1197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Dong L, Zhang Y, Zhang Y, Wu W, Deng X et al (2004) Genome-wide analysis of S-Locus F-box-like genes in Arabidopsis thaliana. Plant Mol Biol 56:929–945

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Howel P, Bruheim S, Ju J, Owen LB, Fodstad O et al (2011) Systematic evaluation of three microRNA profiling platform : microarray, beads array and quantitative real-time PCR array. PLoS One 6:e17167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNAmiR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gladiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H + -pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res (Database issue):D202-229

  • Yin X, Wang J, Cheng H, Wang X, Yu D (2013) Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus. Planta 237:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Chen L, Perl A, Chen S, Ma H (2011) Proteomic changes in grape embryogenic callus in response to Agrobacterium tumefaciens-mediated transformation. Plant Sci 181:485–495

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Li YF, Sunkar R, Zhang W (2012) SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40:e28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada, Agriculture Funding Consortium, Alberta Canola Producers Commission, and Alberta Crop Industry Development Fund is gratefully acknowledged. We would like to thank Sona Todi (Indian Institute of Technology, Kharagpur, India) for her contribution in some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nat N. V. Kav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Visualization of the miRNA microarray data through clustering heat maps showing t-test of selected miRNA differentially expressed in transgenic A. thaliana expressing ABR17 gene compared with WT (a), salt stressed ABR17 compared with non-stressed ABR17 (b), salt-stressed WT compared to non-stressed WT (c), and salt-stressed ABR17 as compared to salt-stressed WT (d). Red indicate an increase in abundance, while green represents a decrease in abundance of miRNAs at a P value of less than 0.01 (P < 0.01) (GIF 261 kb)

High resolution Image (TIFF 747 kb)

Supplementary material S2

a-d Excel sheets showing the modulation of expression of miRNAs in transgenic A. thaliana expressing ABR17 gene compared with WT (a), salt stressed ABR17 compared with non-stressed ABR17 (b), salt-stressed WT compared to non-stressed WT (c), and salt-stressed ABR17 as compared to salt-stressed WT (d) (XLS 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.S., Sinha, R., Rahman, M.H. et al. miRNA-Mediated Posttranscriptional Regulation of Gene Expression in ABR17-Transgenic Arabidopsis thaliana Under Salt Stress. Plant Mol Biol Rep 32, 1203–1218 (2014). https://doi.org/10.1007/s11105-014-0716-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0716-2

Keywords

Navigation