Skip to main content
Log in

AtGRDP1 Gene Encoding a Glycine-Rich Domain Protein Is Involved in Germination and Responds to ABA Signalling

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Seed maturation and germination involve changes in gene expression, as well as physiological and metabolic events; however, much remains to be learned. In plants, abiotic stress affects germination, growth and development, significantly reducing productivity, and in some cases, causing plant death. AtGRDP1 is a novel protein that contains a short glycine-rich domain, a DUF1399 domain, and a putative RNP motif. Expression analysis showed that AtGRDP1 gene is modulated in response to NaCl, LiCl, mannitol, sorbitol, glucose, and exogenous ABA. In order to characterise the AtGRDP1 gene, null mutant and overerexpressing lines were obtained. The Atgrdp1-null mutant line showed an increased sensitivity to salt and osmotic stress in germination and cotyledon development, whereas 35S::AtGRDP1 overerexpressing lines resulted in increased tolerance to abiotic stress. Interestingly, 35S::AtGRDP1 overerexpressing lines showed resistance to ABA, resembling a well-known ABI phenotype, whereas the disruption of AtGRDP1 gene resulted in ABA hypersensitivity, mimicking the ABI3-overexpression phenotype. Furthermore, we analysed the ABI3 and ABI5 genes, which are central regulators in ABA signalling, in Atgrdp1-null mutant and 35S::AtGRDP1 overerexpressing lines. Under ABA treatments, Atgrdp1-null mutant seedlings showed higher ABI3 and ABI5 transcript levels, whereas in 35S::AtGRDP1 overexpressing line, the ABI3 and ABI5 transcripts were repressed. These results suggest that AtGRDP1 gene plays a regulatory role in ABA signalling and tolerance to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig .8

Similar content being viewed by others

Abbreviations

ABI:

abscisic insensitive

ABI3 :

abscisic insensitive 3 gene

ABI5 :

abscisic insensitive 5 gene

AQP:

aquaporine

AtGRDP1 :

Arabidopsis thaliana glycine-rich domain protein 1

bZIP:

basic leucine zipper

DUF1399:

domain unknown function 1399

GRBP:

glycine RNA-binding protein

GRDP:

glycine-rich domain protein

GRP:

glycine-rich protein

Atgrdp1 :

insertional mutant of Atgrdp1

LEA:

late embryogenesis abundant

LTP:

lipid transfer proteins

HSPs:

heat shock proteins

35S::AtGRDP1 :

overexpression of AtGRDP1

qRT-PCR:

quantitative real-time PCR

RBP:

RNA-binding proteins

RNP:

RNA-binding motif

RRM-GRP:

RNA recognition motif GRPs

References

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bies-Etheve N, da Silva Conceicao A, Giraudat J, Koornneef M, Leon-Kloosterziel K, Valon C, Delseny M (1999) Importance of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol Biol 40:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R (2005) Survey of glycine rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet Mol Biol 28:608–624

    Article  CAS  Google Scholar 

  • Chaikam V, Karlson D (2008) Functional characterisation of two cold shock domain proteins from Oryza sativa. Plant Cell Environ 31:995–1006

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. J Integr Biol 15:763–774

    CAS  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer C, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finkelstein RR, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Fusaro AF, Sachetto-Martins G (2007) Blooming time for plant glycine-rich proteins. Plant Signal Behav 2:386–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusaro AF, Bocca SN, Ramos RLB, Barrôco RM, Magioli C, Jorge VC et al (2007) AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225:1339–1351

    Article  PubMed  CAS  Google Scholar 

  • Gao G, Zhang S, Wang C, Yang X, Wang Y, Su X, Du J, Yang C (2011) Arabidopsis cpr5 independently regulates seed germination and postgermination arrest of development through lox pathway and aba signaling. PLoS ONE 6:e19406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signalling mechanisms. Curr Biol 10:R346–R355

    Article  Google Scholar 

  • Hernández-Lucero E, Rodríguez-Hernández AA, Ortega-Amaro A, Jiménez-Bremont JF (2013) Differential expression of genes for tolerance to salt stress in common bean (Phaseolus vulgaris L.). Plant Mol Biol Rep. doi:10.1007/s11105-013-0642-8

    Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hoyos ME, Zhang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang W, Yu D (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung HJ, Kim MK, Kang H (2013) An ABA-regulated putative RNA-binding protein affects seed germination of Arabidopsis under ABA or abiotic stress conditions. J Plant Physiol 15:179–184

    Article  Google Scholar 

  • Kevei Z, Seres A, Kereszt A, Kalo P, Kiss P, Tóth G, Endre G, Kiss GB (2005) Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Genet Genomics 274:644–657

    Article  PubMed  CAS  Google Scholar 

  • Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J et al (2007a) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim JY, Park SJ, Jang B, Jung CH, Ahn SJ, Goh CH, Cho K, Han O, Kang H (2007b) Functional characterization of a glycine-rich RNA-binding protein2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451

    Article  PubMed  CAS  Google Scholar 

  • Kim YO, Pan S, Jung CH, Kang H (2007c) A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol 48:1170–1181

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Vierling E, Böäumlein H, von Koskull-Döring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kwak KJ, Kim YO, Kang H (2005) Characterisation of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration or cold stress. J Exp Bot 56:3007–3016

    Article  PubMed  CAS  Google Scholar 

  • Leprince O, Hendry GAF, McKersie BD (1993) The mechanisms of desiccation tolerance in developing seeds. Seed Sci Res 3:1–246

    Article  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A post-germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA- dependent growth arrest during germination. Plant J 32:317–328

    Article  PubMed  CAS  Google Scholar 

  • Lorković ZJ, Barta A (2002) Genomic analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangeon A, Junqueira RM, Sachetto-Martins G (2010) Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav 5:99–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mousavi A, Hotta Y (2005) Glycine-rich proteins: a class of novel proteins. Appl Biochem Biotechnol 120:169–174

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A 103:10122–10127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nicholas S (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  Google Scholar 

  • Parcy F, Giraudat J (1997) Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidop- sis vegetative tissues. Plant J 11:693–702

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ray A (1997) Three’s company: Regulatory cross-talk during seed development. Plant Cell 9:665–667

    Article  CAS  PubMed Central  Google Scholar 

  • Sachetto-Martins G, Franco LO, de Oliveira DE (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim Biophys Acta 1492:1–14

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signalling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang XF, Zhang DP (2008) Abscisic acid receptors: multiple signal-perception sites. Ann Bot 101:311–317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang C, Zhang DW, Wang YC, Zheng L, Yang CP (2012) A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Mol Biol Rep 39:1047–1053

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F (2008) An update on abscisic acid signalling in plants and more. Mol Plant 1:198–217

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CONACYT (Investigación Ciencia Básica 2008-103106) funding. We are grateful to Jennifer Eckerly Goss and Raquel Jaramillo Monroy for a grammatical review, and M.C. Alicia Becerra Flora for their technical assistance. qRT-PCR analyses were carried out at LANBAMA, IPICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Francisco Jiménez-Bremont.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Multiple alignment of the amino acid sequences of the A. thaliana AtGRDP1 protein with putative orthologous of GRDP proteins in plants. AtGRDP1 (At2g22660) protein and 16 plant GRDP orthologues: Hordeum vulgare (55792422), Sorghum bicolor (242071757), Oryza sativa ssp. japonica (4680491), Arabidopsis lyrata (343817), Cucumis sativus (Cucsa.320670), Vitis vinifera (225469224), Manihot esculenta (cassava4.1_001458m.g), Ricinus communis (255572563), Populus trichocarpa (224133168), Prunus persica (ppa001356m.g), Glycine max (Glyma01g02400), Medicago truncatula (163889366), Mimulus guttatus (mgv1a001498m), Triticum aestivum (CBH32635), Setaria italica (Si005129m) and Zea mays (NP_001183164) sequences from Phytozome. Identical residues (asterisk) in the proteins and conserved amino acid substitutions (dots) are indicated. Dashes show gaps in the amino acid sequences introduced to optimise alignment. Characteristic motifs present in the GRDPs proteins are indicated: the Domain Unknown Function 1399 (DUF1399), the putative RNA binding motif (RNP) and Glycine-Rich Domain (GRD). (JPEG 441 kb)

High resolution image (TIFF 69123 kb)

Supplementary Fig. S2

Gene structure and expression of AtGRDP1 gene in Col-0 plantlets, Atgrdp1-null mutant, and 35S::AtGRDP1 overexpressing lines. A) Schematic representation of AtGRDP1 gene: 5′UTR (white rectangle), exons (grey rectangles), introns (lines), and T-DNA insertion (black triangle) of the Salk_079708 Atgrdp1-null mutant line. B) Expression levels of AtGRDP1 gene in Col-0 and Atgrdp1-null mutant plantlets by qRT-PCR. Value represents fold change in expression level of Atgrdp1-null mutant plantlets compared to Col-0 plantlets. C) Schematic representation of the 35S::AtGRDP1 construct in pMDC32 binary vector. RB, right border for T-DNA integration; 2x35S, cauliflower mosaic virus 35S promoter; attB1 and attB2 sites for recombination; AtGRDP1, A. thaliana GRDP1 cDNA; NosT, nopaline synthase (nos) terminator region; hpt, hygromycin resistance gene; LB, left border for T-DNA integration. D) Expression levels of AtGRDP1 gene in Col-0 and six 35S::AtGRDP1 (OE1, OE2, OE3, OE4, OE5, and OE6) overexpressing lines and four complement lines 35S::AtGRDP1/Atgrdp1 (C2, C3, C4, and C5) by qRT-PCR. Values represent fold change in expression level of transgenic plantlets compared to Col-0 plantlets. Quantification was based on a cycle threshold value, with the expression level of the AtGRDP1 normalised to the A. thaliana ubiquitin 5 (UBQ5) gene. Bars represent mean ± SE (n = 3). Asterisks indicate significant differences among Col-0, overexpressing and complement lines, according to the One-way ANOVA analysis and Tukey’s multiple comparison test (P < 0.05). (JPEG 26 kb)

High resolution image (TIFF 1291 kb)

Supplementary Fig. S3

Percentage of seed germination of A. thaliana Col-0 plantlets, Atgrdp1-null mutant and 35S::AtGRDP1 overexpressing lines under salt stress treatments. Seeds of each line were germinated: control, NaCl (100 and 175 mM), 13 mM LiCl, mannitol 4 % and sorbitol 4 %, seed germination percentages were evaluated at 4, 5, 6, and 7 days of treatments. Bars represent the means ± SE (n = 15) with five replicates. Asterisks indicate significant differences among Col-0, Atgrdp1-null mutant and 35S::AtGRDP1 overexpressing lines, according to the One-way ANOVA analysis and Tukey’s multiple comparison test (P < 0.05). (JPEG 86 kb)

High resolution image (TIFF 5620 kb)

Supplementary Fig. S4

Phenotype of A. thaliana Col-0 plants, Atgrdp1-null mutant and 35S::AtGRDP1 overexpressing lines under salt and osmotic stress treatments. A) Photograph of plantlets (without stress) and schematic representation of the lines arrangement are shown. Phenotype of cotyledons, and green cotyledons percentage was evaluated 16 days after seed germination on conditions of B) control, C) 100 mM NaCl, D) 125 mM NaCl, E) mannitol 4 %, F) sorbitol 4 %, G) glucose 4 %, H) 175 mM NaCl, 16 and 19 mM LiCl, and glucose 4 and 5 %. Bars represent the means ± SE (n = 15) with five replicates. Asterisks indicate significant differences among the Col-0, Atgrdp1-null mutant and 35S::AtGRDP1 overexpressing lines, according to the One-way ANOVA analysis and Tukey’s multiple comparison test (P < 0.05). (JPEG 66 kb)

High resolution image (TIFF 7645 kb)

Supplementary Fig. S5

Percentage of seed germination of A. thaliana Col-0 plants, Atgrdp1-null mutant, 35S::AtGRDP1-6 overexpressing line and (C2) complement line (35S::AtGRDP1/Atgrdp1-2) under abiotic and ABA treatment. Seeds of each line were germinated on 0.5 × MS medium supplemented with NaCl (100, 125, 150 and 175 mM), sorbitol (4, 5, 6 %), and ABA (5, 7 9 μM), seed germination percentages were evaluated at 4, 5, 6, and 7 days of treatments. Bars represent the means ± SE (n = 15) with five replicates. Asterisks indicate significant differences among Col-0, Atgrdp1-null mutant, 35S::AtGRDP1-6 and (C2) complement line (35S::AtGRDP1/Atgrdp1-3), according to the One-way ANOVA analysis and Tukey’s multiple comparison test (P < 0.05). (JPEG 85 kb)

High resolution image (TIFF 5284 kb)

Supplementary Fig. S6

Percentage of green cotyledons of A. thaliana Col-0 plants, Atgrdp1-null mutant, 35S::AtGRDP1-6 overexpressing line and (C2) complement line (35S::AtGRDP1/Atgrdp1-2) under abiotic and ABA treatment. A) Image of plantlets of each line (without stress) and schematic representation of the lines arrangement are shown. Plantlets of different genotypes were grown on 0.5 × MS medium containing 1.5 % sucrose. Green cotyledons percentage was evaluated 16 days after seed germination on conditions: B) 100, 125, 150 mM NaCl, C) sorbitol 4, 5, and 6 %, D) ABA 5, 7, and 9 μM. Photographs were taken on day 16. Bars represent the means ± SE (n = 15) with five replicates. Asterisks indicate significant differences among Col-0, Atgrdp1-null mutant, 35S::AtGRDP1-6 and (C2) complement line (35S::AtGRDP1/Atgrdp1-3), according to the One-way ANOVA analysis and Tukey’s multiple comparison test (P < 0.05). (JPEG 110 kb)

High resolution image (TIFF 12457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Hernández, A.A., Ortega-Amaro, M.A., Delgado-Sánchez, P. et al. AtGRDP1 Gene Encoding a Glycine-Rich Domain Protein Is Involved in Germination and Responds to ABA Signalling. Plant Mol Biol Rep 32, 1187–1202 (2014). https://doi.org/10.1007/s11105-014-0714-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0714-4

Keywords

Navigation