Skip to main content
Log in

Isolation and Expression Analysis of Anthocyanin Biosynthesis Genes from the Red Chinese Sand Pear, Pyrus pyrifolia Nakai cv. Mantianhong, in Response to Methyl Jasmonate Treatment and UV-B/VIS Conditions

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The effects of UV-B/VIS on the expression of genes involved in anthocyanin biosynthesis in the red Chinese sand pear cultivar ‘Mantianhong’, and the role played by the plant hormone methyl jasmonate (MJ) in this effect, were investigated. Four full-length cDNAs and three partial cDNA fragments of genes involved in anthocyanin biosynthesis were isolated from the cultivar. PpPAL2 and PpCHS2 showed considerable sequence identity to the reported PpPAL1 and PpCHS1 sequences. Other genes showed low pronounced sequence identity to other reported members of the same gene family. Bagged mature pear fruits were harvested and then used for postharvest treatment. Fruits were immersed in distilled water, then irradiated with UV-B/VIS light; or treated with MJ first, and then irradiated with UV-B/VIS light. Fruits immersed in distilled water and kept in darkness were used as controls. During UV-B/VIS irradiation, most anthocyanin biosynthesis genes were upregulated in pears in quantities commensurate with the accumulation of anthocyanin, but PpDFR1, PpDFR2, PpbHLH, and PpWD40 were not. MJ treatment had two effects on the expression of genes related to anthocyanin biosynthesis. It advanced the peak time and increased mRNA levels. Each family member of genes involved in anthocyanin biosynthesis showed a differential expression profile. The expression patterns of two genes regulating MJ-mediated plant responses, PpJAZ1 and PpCOI1, were also analyzed. More obvious downregulation and upregulation of PpJAZ1 and PpCOI1, respectively, were detected at 2 days of irradiation (DI) in fruits that were subjected to MJ treatment, as the expressions of most genes related to anthocyanin biosynthesis peaked at this time. We also showed that the regulation of MJ and UV-B/VIS occurred at the transcriptional level. These findings should improve our understanding of the molecular mechanism(s) underlying anthocyanin biosynthesis, which may in turn facilitate the development of new methods to improve fruit color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8(3):272–279. doi:10.1016/j.pbi.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  • Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19(4):441–451. doi:10.1046/j.1365-313X.1999.00539.x

    Article  CAS  PubMed  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. doi:10.1146/annurev.arplant.48.1.355

    Article  CAS  PubMed  Google Scholar 

  • Debes MA, Arias ME, Grellet-Bournonville CF, Wulff AF, Martínez-Zamora MG, Castagnaro AP, Díaz-Ricci JC (2011) White-fruited Duchesnea indica (Rosaceae) is impaired in ANS gene expression. Am J Bot 98(12):2077–2083. doi:10.3732/ajb.1000373

    Article  CAS  PubMed  Google Scholar 

  • Dussi MC, Sugar D, Wrolstad RE (1995) Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color. J Am Soc Hortic Sci 120(5):785–789

    CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427. doi:10.1111/j.1365-313X.2006.02964.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan X, Mattheis JP, Fellman JK (1998) A role for jasmonates in climacteric fruit ripening. Planta 204(4):444–449. doi:10.1007/s004250050278

    Article  CAS  Google Scholar 

  • Feng SQ, Wang YL, Yang S, Xu YT, Chen XS (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232(1):245–255. doi:10.1007/s00425-010-1170-5

    Article  CAS  PubMed  Google Scholar 

  • Fischer TC, Halbwirth H, Meisel B, Stich K, Forkmann G (2003) Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch Biochem Biophys 412(2):223–230. doi:10.1016/s0003-9861(03)00013-4

    Article  CAS  PubMed  Google Scholar 

  • Fischer TC, Gosch C, Pfeiffer J, Halbwirth H, Halle C, Stich K, Forkmann G (2007) Flavonoid genes of pear (Pyrus communis). Trees 21(5):521–529. doi:10.1007/s00468-007-0145-z

    Article  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. doi:10.1111/j.1365-313X.2007.03373.x

    Article  CAS  PubMed  Google Scholar 

  • Han YP, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng DM, Lygin AV, Korban SS (2010) Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol 153(2):806–820. doi:10.1104/pp. 109.152801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071–1083. doi:10.2307/3870058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang ZL, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthesis genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40(11):955–962. doi:10.1016/S0981-9428(02)01454-7

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthesis genes in grape berry skins. Plant Sci 167(2):247–252. doi:10.1016/j.plantsci.2004.03.021

    Article  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982. doi:10.1126/science.1095011

    Article  PubMed  Google Scholar 

  • Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12(2):213–225. doi:10.1007/bf00020506

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ellis BE (2001) The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 127(1):230–239. doi:10.1104/pp. 127.1.230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • la Peña Moreno F, Monagas M, Blanch G, Bartolomé B, Ruiz del Castillo M (2010) Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment. Eur Food Res Technol 230(6):989–999. doi:10.1007/s00217-010-1243-5

    Article  Google Scholar 

  • Li XD, Wu BH, Wang LJ, Zheng XB, Yan ST, Li SH (2009) Changes in trans-resveratrol and other phenolic compounds in grape skin and seeds under low temperature storage after post-harvest UV-irradiation. J Hortic Sci Biotechnol 84(2):113–118

    CAS  Google Scholar 

  • Marais E, Jacobs G, Holcroft DM (2001) Postharvest irradiation enhances anthocyanin synthesis in apples but not in pears. HortSci 36(4):738–740

    CAS  Google Scholar 

  • Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol 72(6):607–620. doi:10.1007/s11103-010-9597-4

    Article  CAS  PubMed  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94(10):5473–5477

    Article  CAS  PubMed  Google Scholar 

  • McGuire RG (1992) Reporting of objective color measurements. HortSci 27:1254–1255

    Google Scholar 

  • Montefiori M, Espley RV, Stevenson D, Cooney J, Datson PM, Saiz A, Atkinson RG, Hellens RP, Allan AC (2011) Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). Plant J 65(1):106–118. doi:10.1111/j.1365-313X.2010.04409.x

    Article  CAS  PubMed  Google Scholar 

  • Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Wang KL, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231(4):887–899. doi:10.1007/s00425-009-1095-z

    Article  CAS  PubMed  Google Scholar 

  • Park WT, Kim YB, Seo JM, Kim SJ, Chung E, Lee JH, Park SU (2013) Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate. J Agric Food Chem 61(17):4127–4132. doi:10.1021/jf400164g

    Article  CAS  PubMed  Google Scholar 

  • Qi TC, Song SS, Ren QC, Wu DW, Huang H, Chen Y, Fan M, Peng W, Ren CM, Xie DX (2011) The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23(5):1795–1814. doi:10.1105/tpc.111.083261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudell DR, Mattheis JP (2008) Synergism exists between ethylene and methyl jasmonate in artificial light-induced pigment enhancement of ‘Fuji’ apple fruit peel. Postharvest Biol Technol 47(1):136–140

    Article  CAS  Google Scholar 

  • Rudell DR, Mattheis JP, Fan X, Fellman JK (2002) Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in ‘Fuji’ apples. J Am Soc Hortic Sci 127(3):435–441

    CAS  Google Scholar 

  • Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374

    CAS  PubMed  Google Scholar 

  • Saniewski M, Miyamoto K, Ueda J (1998) Methyl jasmonate induces gums and stimulates anthocyanin accumulation in peach shoots. J Plant Growth Regul 17(3):121–124. doi:10.1007/PL00007024

    Article  CAS  Google Scholar 

  • Shan LL, Li X, Wang P, Cai C, Zhang B, Sun CD, Zhang WS, Xu CJ, Ferguson I, Chen KS (2008) Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227(6):1243–1254. doi:10.1007/s00425-008-0696-2

    Article  CAS  PubMed  Google Scholar 

  • Shan XY, Zhang YS, Peng W, Wang ZL, Xie DX (2009) Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot 60(13):3849–3860. doi:10.1093/jxb/erp223

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Maeda K, Kato M, Shimomura K (2010) Methyl jasmonate induces anthocyanin accumulation in Gynura bicolor cultured roots. In Vitro Cell Dev Biol-Plant 46(5):460–465. doi:10.1007/s11627-010-9294-7

    Article  CAS  Google Scholar 

  • Shimizu Y, Maeda K, Kato M, Shimomura K (2011) Co-expression of GbMYB1 and GbMYC1 induces anthocyanin accumulation in roots of cultured Gynura bicolor DC. plantlet on methyl jasmonate treatment. Plant Physiol Biochem 49(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Tamari G, Borochov A, Atzorn R, Weiss D (1995) Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: a possible role in wound response. Physiol Plant 94(1):45–50. doi:10.1111/j.1399-3054.1995.tb00782.x

    Article  CAS  Google Scholar 

  • Telias A, Kui LW, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93. doi:10.1186/1471-2229-11-93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthesis genes in apple skin: effect of UV-B and temperature. Plant Sci 170(3):571–578. doi:10.1016/j.plantsci.2005.10.009

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697. doi:10.1093/aob/mcm079

    Article  CAS  PubMed  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthesis genes in relation to anthocyanin accumulation in the pericarp of Litchi Chinensis Sonn. PLoS ONE 6(4):e19455. doi:10.1371/journal.pone.0019455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu B, Zhang D, Huang CH, Qian MJ, Zheng XY, Teng YW, Su J, Shu Q (2012) Isolation of anthocyanin biosynthesis genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected by organ/tissue, cultivar, bagging and fruit side. Sci Hortic 136:29–37. doi:10.1016/j.scienta.2011.12.026

    Article  CAS  Google Scholar 

  • Zhang X, Allan AC, Yi Q, Chen L, Li K, Shu Q, Su J (2011) Differential gene expression analysis of Yunnan Red Pear, Pyrus Pyrifolia, during fruit skin coloration. Plant Mol Biol Rep 29(2):305–314. doi:10.1007/s11105-010-0231-z

    Article  CAS  Google Scholar 

  • Zhang D, Yu B, Bai JH, Qian MJ, Shu Q, Su J, Teng YW (2012) Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’ (Pyrus pyrifolia Nakai) pears. Sci Hortic 134:53–59. doi:10.1016/j.scienta.2011.10.025

    Article  CAS  Google Scholar 

  • Zhou B, Li YH, Xu ZR, Yan HF, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot 58(7):1771–1781. doi:10.1093/jxb/erm036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31272141), the earmarked fund for Modern Agro-industry Technology Research Systems (nycytx-29-14), the Natural Science Foundation of Shaanxi Province (No. 2013JQ3005) and the Science Foundation of Northwest A&F University (No. QN2013015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Zhang or Yuanwen Teng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Amino acid sequence alignment of PpPAL2 with the reported sequences (JPEG 506 kb)

High resolution image (TIFF 2439 kb)

Supplementary Fig. 2

Amino acid sequence alignment of PpCHS2 with the reported sequences (JPEG 4 kb)

High resolution image (TIFF 3916 kb)

Supplementary Fig. 3

Amino acid sequence alignment of PpCHS3 with the reported sequences (JPEG 5 kb)

High resolution image (TIFF 4022 kb)

Supplementary Fig. 4

Amino acid sequence alignment of PpCHS4 with the reported sequences (JPEG 3 kb)

High resolution image (TIFF 2629 kb)

Supplementary Fig. 5

Amino acid sequence alignment of PpCHI2 with the reported sequences (JPEG 3 kb)

High resolution image (TIFF 2446 kb)

Supplementary Fig. 6

Amino acid sequence alignment of PpDFR2 with the reported sequences (JPEG 4 kb)

High resolution image (TIFF 2580 kb)

Supplementary Fig. 7

Amino acid sequence alignment of PpUFGT2 with the reported sequences (JPEG 7 kb)

High resolution image (TIFF 4951 kb)

Supplementary Table 1

(DOCX 16 kb)

Supplementary Table 2

(DOCX 16 kb)

Supplementary Table 3

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, M., Yu, B., Li, X. et al. Isolation and Expression Analysis of Anthocyanin Biosynthesis Genes from the Red Chinese Sand Pear, Pyrus pyrifolia Nakai cv. Mantianhong, in Response to Methyl Jasmonate Treatment and UV-B/VIS Conditions. Plant Mol Biol Rep 32, 428–437 (2014). https://doi.org/10.1007/s11105-013-0652-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0652-6

Keywords

Navigation