Skip to main content
Log in

Overexpression of CsCLCc, a Chloride Channel Gene from Poncirus trifoliata, Enhances Salt Tolerance in Arabidopsis

  • Brief Communication
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Chloride channels (CLCs) have been reported to be involved in plant adaptation to salt stress by regulating Cl homeostasis. In this study, a putative CLC-encoding gene, CsCLCc, was isolated from trifoliate orange [Poncirus trifoliata (L.) Raf]. The deduced amino acids of CsCLCc share high identity with other CLC-like sequences, which also contain domains common in CLC-like transmembrane segments and cystathionine β-synthase domains. Quantitative reverse transcription PCR analysis revealed that the CsCLCc gene expressed in the leaves and roots of trifoliate orange was upregulated by ABA, 4 °C, and NaCl. Transformation of Arabidopsis AtCLCc mutant clcc with 35S::CsCLCc improved seed germination in transgenic plants under salinity. In addition, under 200 mM NaCl treatment, the reduction in fresh weight, electrolyte leakage, and chlorophyll content was lower in the transgenic seedlings than that in mutant or wild type. This was further supported by the observation that the total Cl accumulated in the roots and shoots was lower in transgenic plants than that in mutant or wild type. Our results indicate that CsCLCc could play an important role in Cl homeostasis and could be an important gene target for improving salt tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CBS:

Cystathionine beta-synthase

CLCs:

Chloride channels

EL:

Electrolyte leakage

TMs:

Transmembrane segments

References

  • Bergsdorf EY, Zdebik AA, Jentsch TJ (2008) Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem 284:11184–11193

    Article  Google Scholar 

  • Brumos J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sanchez G, Iglesias DJ, Lopez-Climent MF, Gomez-Cadenas A, Talon M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Func Integr Genomics 9:293–309

    Article  CAS  Google Scholar 

  • Brumos J, Talon M, Bouhlal R, Colmenero-Flores JM (2010) Cl homeostasis in includer and excluder citrus rootstocks: transport mechanisms and identification of candidate genes. Plant Cell Environ 33:2012–2027

    Article  PubMed  CAS  Google Scholar 

  • Chen WR, He ZLL, Yang XE, Mishra S, Stoffella PJ (2010) Chloride nutrition of higher plants: progress and perspectives. J Plant Nutr 33:943–952

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2009) CLC-mediated anion transport in plant cells. Philos Trans R Soc B-Biol Sci 364:195–201

    Article  Google Scholar 

  • Diedhiou C, Golldack D (2005) Salt-dependent regulation of chloride channel transcripts in rice. Plant Sci 160:793–800

    Google Scholar 

  • Dutzler R (2006) The CLC family of chloride channels and transporters. Curr Opin Struct Biol 16:439–446

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a CLC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  • Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010) CLC-b-mediated NO3 /H+ exchange across the tonoplast of arabidopsis vacuoles. Plant Cell Physiol 51:960–968

    Article  PubMed  Google Scholar 

  • Geelen D, Lurin C, Bouchez D, Frachisse J-M, Lelièvre F, Courtial B, Barbier-Brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–267

    Article  PubMed  CAS  Google Scholar 

  • Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271:33632–33638

    Article  PubMed  CAS  Google Scholar 

  • Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S, Barbier-Brygoo H, Vavasseur A, Filleur S, Leonhardt N (2010) The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J 64:563–576

    Article  PubMed  CAS  Google Scholar 

  • Li WYF, Wong FL, Tsai SN, Phang TH, Shao GH, Lam HM (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29:1122–1137

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Baldwin CM, Hu Q, Liu H, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–289

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278–290

    Article  CAS  Google Scholar 

  • Lurin C, Geelen D, Barbier-Brygoo H, Guern J, Maurel C (1996) Cloning and functional expression of a plant voltage-dependent chloride channel. Plant Cell 8:701–711

    PubMed  CAS  Google Scholar 

  • Lv QD, Tang RJ, Liu H, Gao XS, Li YZ, Zheng HQ, Zhang HX (2009) Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. Plant Sci 176:650–661

    Article  CAS  Google Scholar 

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    Article  PubMed  CAS  Google Scholar 

  • Matulef K, Maduke M (2007) The CLC chloride channel family: revelations from prokaryotes. Mol Membr Biol 24:342–350

    Article  PubMed  CAS  Google Scholar 

  • Meng CM, Zhang TZ, Guo WZ (2009) Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep 27:381–387

    Article  CAS  Google Scholar 

  • Monachello D, Allot M, Oliva S, Krapp A, Daniel-Vedele F, Barbier-Brygoo H, Ephritikhine G (2009) Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways. New Phytol 183:88–94

    Article  PubMed  CAS  Google Scholar 

  • Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Fukuda A, Sakai S, Tanaka Y (2006) Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol 47:32–42

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Kajita S, Osakabe K (2011) Genetic engineering of woody plants: current and future targets in a stressful environment. Physiol Plant 142:105–117

    Article  PubMed  CAS  Google Scholar 

  • Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169:647–666

    Article  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Storey R, Walker RR (1998) Citrus and salinity. Sci Hort 78:39–81

    Article  Google Scholar 

  • Syvertsen JP, Melgar JC, Garcia-Sanchez F (2010) Salinity tolerance and leaf water use efficiency in citrus. J Am Soc Hortic Sci 135:33–39

    Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wege S, Jossier M, Filleur S, Thomine S, Barbier-Brygoo H, Gambale F, De Angeli A (2010) The proline 160 in the selectivity filter of the Arabidopsis NO3 /H+ exchanger AtCLCa is essential for nitrate accumulation in planta. Plant J 63:861–869

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • Yang G, Zhou R, Tang T, Chen X, Ouyang J, He L, Li W, Chen S, Guo M, Li X, Zhong C, Shi S (2011) Gene expression profiles in response to salt stress in Hibiscus tiliaceus. Plant Mol Biol Rep 29:609–617

    Article  Google Scholar 

  • Zhou GA, Qiu LJ (2010) Identification and functional analysis on abiotic stress response of soybean Cl channel gene GmCLCnt. Agric Sci China 9:199–206

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  • Zifarelli G, Pusch M (2010) CLC transport proteins in plants. FEBS Lett 584:2122–2127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Modern Agriculture (Citrus) Industry System of Special Funds (CARS-27) and Special Fund for Agro-scientific Research in the Public Interest (201203075). The authors thank Dr. Zhiyong Pan for critical reading of this manuscript and Prof. Yanxiu Liu for her help in improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ang Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Alignment of the amino acid sequences of CsCLCc and CLCs from other plants. The accession numbers of the corresponding proteins are PtrCLC-7 (XP_002331119), VvCLC (XP_002268066), AtCLCc (NP_199800), CLC-Nt1 (CAA64829.1), GmCLC (AAY43007.1), AtCLCa (NP_198905.1), StCLC1 (CAA71369.1), and ZmCLC (NP_001183936.1). Black and gray shading indicate sequence identity and similarity, respectively. The conserved motifs GxGIPE, GKxGPxxH, and PxxGxLF are indicated by a box, and the transmembrane segments (TM1-10) and cystathionine β-synthase domains (CBS1-2) are indicated by the line above the sequences (TIFF 3423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Liu, Y., Zhou, G. et al. Overexpression of CsCLCc, a Chloride Channel Gene from Poncirus trifoliata, Enhances Salt Tolerance in Arabidopsis . Plant Mol Biol Rep 31, 1548–1557 (2013). https://doi.org/10.1007/s11105-013-0592-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0592-1

Keywords

Navigation