Skip to main content
Log in

Rep-PCR Identifies Both Inter- and Intra-Specific Mitochondrial Genome Differences in Carthamus

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mitochondria are derived from ancient prokaryotic endosymbionts, and their genomes exhibit similarities to prokaryote genomes. Therefore, it was hypothesized that the molecular techniques suitable for distinguishing prokaryotic genomes could also be used to assess mitochondrial diversity. The rep-PCR (repetitive element palindromic-PCR) technique, based on the repetitive sequences found in bacterial genomes, has been used extensively for identifying and distinguishing bacterial strains. This study was undertaken to evaluate the utility of rep-PCR for identifying mitochondrial (mt) genome diversity in safflower (Carthamus tinctorius L.) and its wild relatives. Using three sets of commonly used primers, BOX, ERIC and REP, both inter-specific and intra-specific mt genome diversities in Carthamus were identified. To confirm that the amplicons obtained with rep-PCR were derived from mitochondrial genomes, we cloned and sequenced six randomly chosen bands from rep-PCR gels and demonstrated that the amplified products were mitochondrial-genome-specific. The advantages of rep-PCR in assessing chondriome variability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b

Similar content being viewed by others

References

  • Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Method 9:321–328

    Article  Google Scholar 

  • Alverson AJ, Wei XX, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrulluslanatus and Cucurbitapepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448

    Article  PubMed  CAS  Google Scholar 

  • Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 6(1):e16404. doi:10.1371/journal.pone.0016404

    Article  PubMed  CAS  Google Scholar 

  • Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 63:21–30

    Article  Google Scholar 

  • Amiri RM, YazdiSamadi B, Ghanadha MR, Abd MC (2001) Detection of DNA polymorphism in landrace populations of safflower in Iran using RAPD-PCR technique. Iran J AgricSci 32:737–745

    Google Scholar 

  • Andre C, Levy A, Walbot V (1992) Small repeated sequences and the structure of plant mitochondrial genomes. Trends Genet 8:128–132

    PubMed  CAS  Google Scholar 

  • Aono N, Shimizu T, Inoue T, Shiraishi H (2002) Plaindromic repetitive elements in the mitochondrial genome of Volvox. FEBS Lett 521:95–99

    Article  PubMed  CAS  Google Scholar 

  • Ash GJ, Raman R, Crump NS (2003) An investigation of genetic variation in Carthamus lanatus in New South Wales, Australia, using intersimple sequence repeats (ISSR) analysis. Weed Res 43:208–213

    Article  CAS  Google Scholar 

  • Ashri A (1975) Evaluation of germplasm collection of safflower(Carthamus tinctorius L) V. Distribution and regional divergence for morphological characters. Euphytica 24:651–659

    Article  Google Scholar 

  • Ashutosh, Dwivedi KK, Kumar VD, Prakash S, Bhat SR (2005) rep-PCR helps to distinguish different alloplasmic cytoplasmic male sterile lines of Brassica juncea. Plant Sci 168:1083–1087

    Article  CAS  Google Scholar 

  • Atlan A, Couvet D (1993) A model simulating the dynamics of plant mitochondrial genomes. Genetics 135:213–222

    PubMed  CAS  Google Scholar 

  • Bach IC, Olesen A, Simon PW (2002) PCR-based markers to differentiate the mitochondrial genomes of peialoid and male fertile carrot (Daucuscarota L.). Euphytica 127:353–365

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctoriusL.; Asteraceae). BMC Plant Biology 7:60

    Article  PubMed  Google Scholar 

  • Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a near eastern origin and five centers of diversity. Am J Bot 97:831–840

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  PubMed  CAS  Google Scholar 

  • Engelke T, Tatlioglu T (2002) A PCR-marker for the CMS, inducing cytoplasm in chives derived from recombination events affecting the mitochondrial gene atp9. Theor Appl Genet 104:698–702

    Article  PubMed  CAS  Google Scholar 

  • Ennos RA, Sinclair WT, Hu XS, Langdon A (1999) Using organelle markers to elucidate the history, ecology and evolution of plant populations. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor and Francis, London, pp 1–19

    Chapter  Google Scholar 

  • Fernandez-Martinez J, Rio MD, Haro AD (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69:115–122

    Article  CAS  Google Scholar 

  • Fukunaga K, Kato K (2003) Mitochondrial DNA variation in foxtail millet Setariaitalica (L.) P. Beauv. Euphytica 129:7–13

    Article  CAS  Google Scholar 

  • Gray MW (1999) Evolution of organellar genomes. CurrOpin Genet Dev 9(Gray MW):678–687

    Article  CAS  Google Scholar 

  • Han Y, Li D (1992) Evaluation of safflower (Carthamus tinctorius L.) germplasm-analysis in fatty acid composition of seeds of domestic and exotic safflower varieties. Bot Res 6:28–35

    Google Scholar 

  • Hiett KL, Seal BS (2009) Use of repetitive element palindromic PCR (rep-PCR) for the epidemiologic discrimination of foodborne pathogens. Methods Mol Biol 551:49–58

    Article  PubMed  CAS  Google Scholar 

  • Jaradat AA, Shahid MA (2006) Patterns of phenotypic variation in a germplasm collection of (Carthamus tinctorius L.) from the Middle East. Genet Resour Crop Evol 53:225–244

    Article  Google Scholar 

  • Kirti PB, Mohapatra T, Khanna H, Prakash S, Chopra VL (1995) Diplotaxiscatholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep 14:593–597

    Article  CAS  Google Scholar 

  • Lily JW, Havey MJ (2001) Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 159:317–328

    Google Scholar 

  • Liu Z, Peter OS, Long M, Weingartner U, Stamp P, Kaeser O (2002) A PCR assay for rapid discrimination of sterile cytoplasm types in maize. Crop Sci 42:566–569

    Article  CAS  Google Scholar 

  • Louws FJ, Schneider M, de Bruijn FJ (1996) Assessing genetic diversity of microbes using repetitive-sequence-based PCR (rep-PCR). In: Toranzos GA (ed) Nucleic acid amplification methods for the analysis of environmental samples. Technomic, Lancaster, PA, pp 63–94

  • Lupski JR, Weinstock GM (1992) Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol 174:4525–4529

    PubMed  CAS  Google Scholar 

  • Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–585

    PubMed  CAS  Google Scholar 

  • Mayerhofer R, Archibald C, Bowles V, Good AG (2010) Development of molecular markers and linkage maps for the Carthamus species C. tinctorius and C. oxyacanthus. Genome 53:266–276

    Article  PubMed  CAS  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    Article  PubMed  CAS  Google Scholar 

  • Naresh V, Yamini KN, Rajendrakumar P, Kumar VD (2009) EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica 170:347–353

    Article  CAS  Google Scholar 

  • Nishizawa S, Kubo T, Mikami T (2000) Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr Genet 37:34–38

    Article  PubMed  CAS  Google Scholar 

  • Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y (2009) Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens. Plant Cell 21:1182–1194

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1992) Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics. Chapman and Hall, New York, pp 36–49

    Chapter  Google Scholar 

  • Rademaker JLW, de Bruijn FJ (1998) Characterization and classification of microbed by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In: Caetano-Anolles G, Gresshoff P (eds) DNA markers: protocols, applications and overviews. Wiley-Liss, New York, pp 151–185

    Google Scholar 

  • Reyes-Ramirez A, Ibarra JE (2005) Fingerprinting of bacillus thuringiensistype strains and isolates by using bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl Environ Microbiol 71:1346

    Article  PubMed  CAS  Google Scholar 

  • Sane AP, Seth P, Ranade SA, Nath P, Sane V (1997) RAPD analysis of isolated mitochondrial DNA reveals heterogeneity in elite wild abortive (WA) cytoplasm in rice. Theor Appl Genet 95:1098–1103

    Article  CAS  Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76

    Article  CAS  Google Scholar 

  • Sehgal D, Rajpal RV, Raina NS (2008) Chloroplast DNA diversity reveals the contribution of two wild species to the origin and evolution of diploid safflower (Carthamus tinctorius L.). Genome 51:638–643

    Article  PubMed  CAS  Google Scholar 

  • vanBekum A (1994) DNA fingerprinting of medically important microorganisms by use of PCR. J Clin Microbial Rev 7:174–184

    Google Scholar 

  • Versalovic J, Schneider M, de Bruijn F, Lupski J (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Bio 5:25–40

    CAS  Google Scholar 

  • Versalovic J, de Bruijn FJ, Lupski JR (1997) Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes. In: de Bruijn FJ, Lupski JR, Weinstock GM (ed) Bacterial genomes: physical structure and analysis. Chapman and Hall, New York, pp 437–453.

  • Vijay D, Dadlani M, Kumar PA, Panguluri SK (2009) Molecular marker analysis of differentially aged seeds of soybean and safflower. Plant Mol Biol Rep 27:282–291

    Article  CAS  Google Scholar 

  • Vilatersana R, Garnatje T, Susanna A, Garcia-Jacas N (2005) Taxonomic problems in Carthamus (Asteraceae): RAPD markers and sectional classification. Bot J Linn Soci 147:375–383

    Article  Google Scholar 

  • Wang XR, Szmidt AE, Lu MZ (1996) Genetic evidence for the presence of cytoplasmic DNA in pollen and megagametophytes and maternal inheritance of mitochondrial DNA in Pinus. For Genet 3:37–44

    Google Scholar 

  • Wijnants L, Vasseur J, Rambaud C (2001) Universal RAGE-PCR primers to detect mitochondrial polymorphisms among Magnoliophyta. Mol Ecol Notes 1:123–125

    Article  CAS  Google Scholar 

  • Yamagishi H, Terachi T (2003) Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome 46:89–94

    Article  PubMed  CAS  Google Scholar 

  • Yamini KN, Ramesh K, Naresh V, Anjani K, Kumar VD (2013) Development of EST-SSR markers and their utility in revealing cryptic diversity in safflower (Carthamus tinctorius L.). J Plant Biochem Biotechnol 22:90–102

    Article  CAS  Google Scholar 

  • Yang Y, Xia WW, Zheng YL, Chen L, Liu RJ, Huang CY (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54:1043–1051

    Article  CAS  Google Scholar 

  • Yashitola J, Sundaram RM, Biradar SK, Thirumurugan T, Vishnupriya MR, Rajeshwari R, Viraktamath BC, Naseerullah MK, Sarma NP, Sonti RV (2004) A sequence specific PCR marker for distinguishing rice lines on the basis of wild abortive cytoplasm from their cognate maintainer lines. Crop Sci 44:920–924

    Article  CAS  Google Scholar 

  • Yazdankhah SP, Lindstedt BA (2007) Variable number tandem repeat typing of bacteria. Methods Mol Biol 396:395–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. K. Anjani, Principal Scientist, Directorate of Oilseeds Research, Rajendranagar, Hyderabad for kindly providing the plant material used in the study. Facilities provided by the Project Director, Directorate of Oilseeds Research, Rajendranagar, Hyderabad for carrying out this research work is acknowledged. The authors also acknowledge the efforts of Mr. Velu Mani Selvaraj, Research Scholar with VDK for critical reading and useful editing of the manuscript that improved presentation substantially. The authors are also grateful to the two anonymous reviewers whose critical comments helped improve the readability and clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Viswanathaswamy.

Electronic supplementary material

ESM 1

(JPEG 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathaswamy, D.K., Nizampatnam, N.R. Rep-PCR Identifies Both Inter- and Intra-Specific Mitochondrial Genome Differences in Carthamus . Plant Mol Biol Rep 31, 1150–1156 (2013). https://doi.org/10.1007/s11105-013-0580-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0580-5

Keywords

Navigation