Skip to main content
Log in

The mitochondrial DNA markers for distinguishing Phalaenopsis species and revealing maternal phylogeny

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Moth orchids (Phalaenopsis) are among the top-traded blooming potted plants in the world. To explore mitochondrial DNA (mtDNA) markers for species identification, we located simple sequence repeats in the mtDNA of Phalaenopsis aphrodite subsp. formosana and then pre-screened them for polymorphic markers by their comparison with corresponding mtDNA regions of P. equestris. The combination of 13 selected markers located in intergenic spacers could unambiguously distinguish 15 endemic moth orchids. Five most variable markers with polymorphic information content (PIC) ≥ 0.7 could be combined to classify 18 of 19 endemic moth orchids including parental strains most commonly used in breeding programs. The sequences of four selected mtDNA regions were highly variable, and one region (MT2) could be used to completely distinguish 19 endemic moth orchids. Though mitochondrial introns were highly conserved among moth orchids, evolutionary hotspots, such as variable simple sequence repeats and minisatellite repeats, were identified as useful markers. Furthermore, a marker technology was applied to reveal the maternal inheritance mode of mtDNA in the moth orchids. Moreover, phylogenetic analysis indicates that the mtDNA was nonmonophyletic below the Phalaenopsis genus. In summary, we have revealed a set of mtDNA markers that could be used for identification and phylogenetic study of Phalaenopsis orchids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

amplified fragment length polymorphism

CAPS:

cleaved amplified polymorphic sequence

cpDNA:

chloroplast DNA

InDel:

insertion and deletion

ML:

maximum likelihood

mtDNA:

mitochondrial DNA

NGS:

next generation sequencing

nrITS:

internal transcribed spacers of nuclear ribosomal DNA

PAGE:

polyacrylamide gel electrophoresis

PCR:

polymerase chain reaction

PIC:

polymorphic information content

RAPD:

random amplified polymorphic DNA

RHS:

Royal Horticultural Society

SNP:

single nucleotide polymorphism

SSR:

simple sequence repeat

STR:

sequence tandem repeat

UPGMA:

unweighed pair-group method with arithmetic mean

References

  • Agarwal, M., Shrivastava, N., Padh, H.: Advances in molecular marker techniques and their applications in plant sciences. — Plant Cell Rep. 27: 617–631, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Apitz, J., Weihe, A., Pohlheim, F., Borner, T.: Biparental inheritance of organelles in Pelargonium: evidence for intergenomic recombination of mitochondrial DNA. — Planta 237: 509–515, 2013

    Article  CAS  PubMed  Google Scholar 

  • Atwood, J.T.: The size of the Orchidaceae and the systematic distribution of epiphytic orchids. — Selbyana 9: 171–186, 1986.

    Google Scholar 

  • Barr, C.M., Keller, S.R., Ingvarsson, P.K., Sloan, D.B., Taylor, D.R.: Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. — Mol. Biol. Evol. 24: 1783–1791, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bastien, D., Favre, J.M., Collignon, A.M., Sperisen, C., Jeandroz, S.: Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]. — Theor. appl. Genet. 107: 574–580, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Beckert, S., Muhle, H., Pruchner, D., Knoop, V.: The mitochondrial nad2 gene as a novel marker locus for phylogenetic analysis of early land plants: a comparative analysis in mosses. — Mol. Phylogenet. Evol. 18: 117–126, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Cafasso, D., Widmer, A., Cozzolino, S.: Chloroplast DNA inheritance in the orchid Anacamptis palustris using singleseed polymerase chain reaction. — J. Hered. 96: 66–70, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.C., Liu, K.W., Chen, L.J., He, Y., Xu, Q., Bian, C., Zheng, Z., Sun, F., Liu, W., Hsiao, Y.Y., Pan, Z.J., Hsu, C.C., Yang, Y.P., Hsu, Y.C., Chuang, Y.C., Dievart, A., Dufayard, J.F., Xu, X., Wang, J.Y., Wang, J., Xiao, X.J., Zhao, X.M., Du, R., Zhang, G.Q., Wang, M., Su, Y.Y., Xie, G.C., Liu, G.H., Li, L.Q., Huang, L.Q., Luo, Y.B., Chen, H.H., Van de Peer, Y., Liu, Z.J.: The genome sequence of the orchid Phalaenopsis equestris. — Nat. Genet. 47: 65–72, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Chang, S.B., Chen, W.H., Chen, H.H., Fu, Y.M., Lin, Y.S.; RFLP and inheritance patterns of chloroplast DNA in intergeneric hybrids of Phalaenopsis and Doritis. — Bot. Bull. Acad. sin. 41: 219–223, 2000.

    CAS  Google Scholar 

  • Chang, C.C., Lin, H.C., Lin, I.P., Chow, T.Y., Chen, H.H., Chen, W.H., Cheng, C.H., Lin, C.Y., Liu, S.M., Chang, C.C., Chaw, S.M.: The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. — Mol. Biol. Evol. 23: 279–291, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y.K., Veilleux, R.E.: Analysis of genetic variability among Phalaenopsis species and hybrids using amplified fragment length polymorphism. — J. amer. Soc. hort. Sci. 134: 58–66, 2009.

    Google Scholar 

  • Cheng, D., Yoshida, Y., Kitazaki, K., Negoro, S., Takahashi, H., Xu, D., Mikami, T., Kubo, T.: Mitochondrial genome diversity in Beta vulgaris L. ssp. vulgaris (leaf and garden beet groups) and its implications concerning the dissemination of the crop. — Genet. Resour. Crop Evol. 58; 553–560, 2011.

    Article  Google Scholar 

  • Christenson E.A.: Phalaenopsis: a Monograph. — Timber Press, Portland 2001.

    Google Scholar 

  • Da Maia, L.C., Palmieri, D.A., De Souza, V.Q., Kopp M.M., De Carvalho, F.I., De Costa, O.A.: SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. — Int. J. Plant Genomics 2008: 412696, 2008.

    PubMed Central  PubMed  Google Scholar 

  • Fatimah, D., Sukma, D.: Development of sequence-based microsatellite marker for Phalaenopsis orchid. — HAYATI J. Bios. 18: 71–76, 2011.

    Article  Google Scholar 

  • Freudenstein, J.V., Chase, M.W.: Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: utility and coding of length-change characters. — Syst. Bot. 26: 643–657, 2001.

    Google Scholar 

  • Froelicher, Y., Mouhaya, W., Bassene, J.B., Costantino, G., Kamiri, M., Luro, F., Morillon, R., Ollitrault, P.: New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. — Tree Genet. Genomes 7: 49–61, 2011.

    Article  Google Scholar 

  • Godbout, J., Jaramillo-Correa, J.P., Beaulieu, J., Bousquet, J.: A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. — Mol. Ecol. 14: 3497–3512, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Goh, M.W.K., Kumar, P.P., Lim, S.H., Tan, H.T.W.: Random amplified polymorphic DNA analysis of the moth orchids, Phalaenopsis (Epidendroideae: Orchidaceae). — Euphytica 141: 11–22, 2005.

    Article  CAS  Google Scholar 

  • Hollingsworth, P.M., Graham, S.W., Little, D.P.: Choosing and using a plant DNA barcode. — PLoS ONE 6: e19254, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harvey, M.J.: Predominant paternal transmission of the mitochondrial genome in cucumber. — J. Hered. 88: 232–235, 1997.

    Article  Google Scholar 

  • He, C., Poysa, V., Yu, K.: Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. — Theor. appl. Genet. 106: 363–373, 2003.

    CAS  PubMed  Google Scholar 

  • Honma, Y., Yoshida, Y., Terachi, T., Toriyama, K., Mikami, T., Kubo, T.: Polymorphic minisatellites in the mitochondrial DNAs of Oryza and Brassica. — Curr. Genet. 57: 261–270, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, C.C., Chung, Y.L., Chen, T.C., Lee, Y.L., Kuo, Y.T., Tsai, W.C., Hsiao, Y.Y., Chen, Y.W., Wu, W.L., Chen, H.H.: An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. — BMC Plant Biol. 11: 3–13, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaramillo-Correa, J.P., Bousquet, J., Beaulieu, J., Isabel, N., Perron, M., Bouill, M.: Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. — Theor. appl. Genet. 106; 1353–1367, 2003.

    CAS  PubMed  Google Scholar 

  • Jaramillo-Correa, J.P., Aguirre-Planter, E., Eguiarte, L.E., Khasa, D.P., Bousquet, J.: Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants. — J. mol. Evol. 76: 146–157, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Jheng, C.F., Chen, T.C., Lin, J.Y., Chen, T.C., Wu, W.L., Chang, C.C.: The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. — Plant Sci. 190: 62–73, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Kapil, A., Shanker, A.: MitoSatPlant: mitochondrial microsatellites database of viridiplantae. — Mitochondrion 19: 334–337, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.W., Bang, K.H., Kim, Y.C., Seo, A.Y., Jo, I.H., Lee, J.H., Kim, O.T., Hyun, D.Y., Cha, S.W., Cho, J.H.: CAPS markers using mitochondrial consensus primers for molecular identification of Panax species and Korean ginseng cultivars (Panax ginseng C. A. Meyer). — Mol. Biol. Rep. 39: 729–736, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.M., Nahm, S.H., Kim, Y.M., Kim, B.D.: Characterization and molecular genetic mapping of microsatellite loci in pepper. — Theor. appl. Genet. 108: 619–627, 2004.

    Article  CAS  PubMed  Google Scholar 

  • McCauley, D.E.: Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. — New Phytol. 200: 966–977, 2013.

    Article  PubMed  Google Scholar 

  • Neale, D.B., Sederoff, R.R.: Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. — Theor. appl. Genet. 77: 212–216, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Niknejad, A., Kadir, M.A., Kadzimin, S.B., Abdullah, N.A.P., Sorkheh, K.: Molecular characterization and phylogenetic relationships among and within species of Phalaenopsis (Epidendroideae: Orchidaceae) based on RAPD analysis. — Afr. J. Biotechnol. 8: 5225–5240, 2009.

    CAS  Google Scholar 

  • Nishizawa, S., Kubo, T., Mikami, T.: Variable number of tandem repeat loci in the mitochondrial genomes of beets. — Curr. Genet. 37: 34–38, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Petit, R.J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D., Vendramin, G.G.: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. — Mol. Ecol. 14: 689–701, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Quenzar, B., Trifi, M., Bouachrine, B., Hartmann, C., Marrakchi, M., Benslimane, A.A., Rode, A.: A mitochondrial molecular marker of resistance to Bayoud disease in date palm. — Theor. appl. Genet. 103: 366–370, 2001.

    Article  CAS  Google Scholar 

  • Rajendrakumar, P., Biswal, A.K., Balachandran, S.M., Srinivasarao, K., Sundaram, R.M.: Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. — Bioinformatics 23: 1–4, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Sloan, D.B., Alverson, A.J., Chuckalovcak, J.P., Wu, M., McCauley, D.E., Palmer, J.D., Taylor, D.R..: Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. — PLoS Biol. 10: e1001241, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperisen, C., Büchler, U., Gugerli, F., Mátyás, G., Geburek, T., Vendramin, G.G.: Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. — Mol. Ecol. 10: 257–263, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28; 2731–2739, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai, C.C., Chiang, Y.C., Huang, S.C., Chen, C.H., Chou, C.H.; Molecular phylogeny of Phalaenopsis blume (Orchidaceae) on the basis of plastid and nuclear DNA. — Plant Syst. Evol. 288: 77–98, 2010.

    Article  CAS  Google Scholar 

  • Tsai, C.C., Chiang, Y.C., Lin, Y.S., Liu, W.L., Chou, C.H.; Plastid trnL intron polymorphisms among Phalaenopsis species used for identifying the plastid genome type of Phalaenopsis hybrids. — Sci. Hort. 142: 84–91, 2012.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, Y., Fang, Z., Liu, Y., Yang, L., Zhuang, M.; Chloroplast and mitochondrial SSR help to distinguish allocytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). — Mol. Breed. 30: 709–716, 2012.

    Article  Google Scholar 

  • Yoshida, Y., Matsunaga, M., Cheng, D., Xu, D., Honm, A Y., Mikami, T., Kubo, T.: Mitochondrial minisatellite polymorphisms in fodder and sugar beets reveal genetic bottlenecks associated with domestication. — Biol. Plant 56; 369–372, 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. -L. Wu or C. -C. Chang.

Additional information

Acknowledgements: We thank Dr. Chi-Chu Tsai for sparing the moth orchids. We are also grateful to the anonymous reviewers for their comments that helped to improve the quality of this manuscript. This work was financially supported by the grant (MOST 102-2321-B-006-017 and 103-2321-B-006-009) from the Ministry of Science and Technology to C.-C. Chang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B.Y., Chang, C.D., Huang, L.L.H. et al. The mitochondrial DNA markers for distinguishing Phalaenopsis species and revealing maternal phylogeny. Biol Plant 60, 68–78 (2016). https://doi.org/10.1007/s10535-015-0566-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0566-2

Additional key words

Navigation