Skip to main content
Log in

Expression of Lignin Biosynthetic Genes in Wheat during Development and upon Infection by Fungal Pathogens

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

As a major component of the cell wall, lignin plays an important role in plant development and defense response to pathogens, but negatively impacts biomass processability for biofuels. Silencing the target lignin genes for greater biomass processability should not significantly affect plant development and biomass yield but also must not compromise disease resistance. Here, we report experiments to identify a set of lignin genes that may be silenced without compromising disease resistance. We profiled the expression of 32 lignin biosynthetic candidate genes by qRT-PCR in 17 wheat tissues collected at three developmental stages. Twenty-one genes were expressed at a much higher level in stems compared to sheaths and leaf blades. Expression of seven these genes significantly correlated with lignin content. The co-expression patterns indicated that these 21 genes are under strong developmental regulation and may play a role in lignin biosynthesis. Profiling gene expression of same tissues challenged by two fungal pathogens, Fusarium graminearum and Puccina triticina indicated that expression of 17 genes was induced by F. graminearum. Only PAL1, a non-developmental-regulated gene, was induced by P. triticina. Thus, lignin biosynthetic pathway overlaps defense response to F. graminearum. Based on these criteria, 17 genes, F5H1, F5H2, 4CL2, CCR2, COMT1, and COMT2 in particular that do not overlap with disease resistance pathway, may be the targets for downregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4CL:

4-coumarate CoA ligase

ABSL:

Acetyl bromide soluble lignin

C3H:

p-coumaroyl shikimate/quinate 3′-hydroxylase

C4H:

cinnamate 4-hydroxlase

CCoAOMT:

caffeoyl CoA O-methyltransferase

CCR:

cinnamoyl CoA reductase

CAD:

cinnamyl alcohol dehydrogenase

COMT:

caffeic acid/5-hydroxyferulic acid O-methyltransferase

EST:

expressed sequence tag

F5H:

ferulate 5-hydroxylase

HCT:

hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyltransferase

PAL:

phenylalanine ammonia lyase

qRT-PCR:

quantitative real-time PCR

TaGI:

Triticum aestivum gene index database

TC:

tentative consensus

References

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell wall of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • Costa MA, Collins RE, Anterola AM, Cochrane FC, Davin LB, Lewis NG (2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64:1097–1112

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    Article  CAS  PubMed  Google Scholar 

  • Fukushima RS, Hatfield RD (2001) Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 49:3133–3139

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567

    Article  CAS  PubMed  Google Scholar 

  • Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–363

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  CAS  PubMed  Google Scholar 

  • Hill-Ambroz K, Webb CA, Matthews AR, Li W, Gill BS, Fellers JP (2006) Expression analysis and physical mapping of a cDNA library of Fusarium head blight infected wheat spikes. Plant Genome, a supplement to Crop Sci 46:S14–S26

    Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  CAS  PubMed  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Omura T (1971) Linkage analysis by reciprocal translocation method in rice plants (Oryza sativa L.). II. Linkage groups corresponding to the chromosomes 5, 6, 8, 9, 10 and 11. Sci Bull Fac Agric Kyushu Univ 25:137–153

    Google Scholar 

  • Iwata N, Omura T (1977) Linkage studies in rice (Oryza sativa L.) on some mutants derived from chronic gamma irradiation. J Fac Agric Kyushu Univ 21:117–127

    Google Scholar 

  • Jorgensen LR (1931) Brown midrib in maize and its linkage relations. J Am Soc Agron 23:549–557

    Google Scholar 

  • Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal CG, Saranpää P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328

    Article  CAS  PubMed  Google Scholar 

  • Kuc J, Nelson OE (1964) The abnormal lignins produced by the brown-midrib mutants of maize. I. brown midrib mutant. Arch Biochem Biophys 105:103–113

    Article  CAS  PubMed  Google Scholar 

  • Large EG (1954) Growth stages in cereals: illustration of the Feeke’s scale. Plant Pathol 3:128–129

    Article  Google Scholar 

  • Li W, Faris JD, Muthukrishnan S, Liu DJ, Chen PD, Gill BS (2001) Isolation and characterization of novel cDNA clones encoding chitinases and β-1, 3-glucanases from wheat spikelets infected by Fusarium graminearum. Theor Appl Genet 102:353–362

    Article  CAS  Google Scholar 

  • Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol 113:755–763

    Article  CAS  PubMed  Google Scholar 

  • Nagao S, Takahashi M (1963) Trial construction of twelve linkage groups in Japanese rice: genetical studies on rice plant, XXVII. J Fac Agric Hokkaido Univ 53:72–130

    Google Scholar 

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Applic Biosci 12:357–358

    CAS  Google Scholar 

  • Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterisation of a pine MYB that regulates lignification. Plant J 36:743–754

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819

    Article  CAS  Google Scholar 

  • Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208

    Article  CAS  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH, Favery B, Levis C, Martinet S, Masur C, Ponchet M, Roby D, Schlaich NL, Jouanin L, Keller H (2009) Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog 5:e1000264

    Article  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed  Google Scholar 

  • Rogers L, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    Article  CAS  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181:783–795

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol 150:584–595

    Article  CAS  PubMed  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  CAS  PubMed  Google Scholar 

  • Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capeliades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7(407):416

    Google Scholar 

  • Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Xu Z, Song J, Conner K, Barrena GV, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534–548

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Robert L. Bowden for inoculating P. triticina, Dr. Michael O. Pumphrey for supplying seeds of wheat line HR58 and conidia spores of F. graminearum and Dr Michael Udvardi for providing the LjLb2 cDNA clone. This project was funded by the USDA/DOE Feedstock Genomics Program. This paper is contribution No. 10-341-J from the Kansas Agricultural Experiment Station (Manhattan, KS, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Correlation coefficients between the expression levels of monolignol biosynthetic candidate genes in the internodes, sheath and leaf blades at Feeks’ Stage 10.0 (XLS 37 kb)

Table S2

XLS 34 kb

Table S3

XLS 34 kb

Table S4

XLS 33 kb

Table S5

XLS 33 kb

Table S6

XLS 32 kb

Table S7

Expression levels of monoligol biosynthetic candidate genes at Feeks’ stage 2, 6, and 10.0 (XLS 30 kb)

Table S8

Expression levels of monolignol biosynthetic candidate genes in internodes, sheaths and leaves at Feeks’ stage 10.0 (XLS 32 kb)

Table S9

XLS 32 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, C., Chen, F., Jackson, L. et al. Expression of Lignin Biosynthetic Genes in Wheat during Development and upon Infection by Fungal Pathogens. Plant Mol Biol Rep 29, 149–161 (2011). https://doi.org/10.1007/s11105-010-0219-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0219-8

Keywords

Navigation