Skip to main content
Log in

A Comprehensive Molecular, Biochemical, Histochemical, and Spectroscopic Characterization of Early and Medium Duration Rice Genotypes Investigating Dry Matter Accumulation Efficiencies

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Investigation on accumulation of cell wall components over critical growth stages will surely provide a new insight into dry matter accumulation studies in rice. An elevated biomass production provides an alternative strategy of yield improvement, which in turn maneuvers the species concerned as potential dual-purpose crop. On that note, present study was carried on 33 early and 39 medium duration rice genotypes. The average cellulose accumulation was 6.51% and 8.17% in early and medium duration genotypes, respectively, at flowering stage, which later on dipped to 1.43% and 3.46%, respectively, at physiological maturity. The gene specific marker MDgsp-5.a exhibited highest estimate of polymorphic information content (PIC), i.e., 0.685, closely followed by MDgsp-6.a with polymorphic information content (PIC) of 0.683. The control genotypes, i.e., Pratap and Mandakini, are grouped under the same cluster, i.e., Cluster-I.A, indicating their inherent genetic divergence from that of potential accumulators pertaining to cellulose accumulation. Pratap and Mandakini failed to produce peaks of conspicuous form at 3342 cm−1 and 1635 cm−1, bearing out by their low performance pertaining to cellulose and lignin accumulation at the later stages of development, respectively. From histochemistry studies, it was observed that the cell walls of sclerenchyma, peripheral vascular bundles, and parenchyma of the culm transections in control genotypes stained lightly than that of prolific accumulator cell walls, thus corroborating the findings of compositional analysis. The variation in cell wall thickening is primarily accounted due to altered carbohydrate accumulation across the growth stages as explored under scanning electron micrograph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data associated in the manuscript.

References

  1. Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L., & Taylor, M. (1980). Genetic improvements in winter wheat yields since 1900 and associated physiological changes. The Journal of Agricultural Science, 94(3), 675–689. https://doi.org/10.1017/S0021859600028665.

    Article  Google Scholar 

  2. Ying, J., Peng, S., He, Q., Yang, H., Yang, C., Visperas, R. M., & Cassman, K. G. (1998). Comparison of high-yield rice in tropical and subtropical environments: I. determinants of grain and dry matter yields. Field Crops Research, 57(1), 71–84. https://doi.org/10.1016/S0378-4290(98)00077-X.

    Article  Google Scholar 

  3. Shahidullah, S. M., Hanafi, M. M., Ashrafuzzaman, M., Ismail, M. R., Salam, M. A., & Khair, A. (2010). Biomass accumulation and energy conversion efficiency in aromatic rice genotypes. Comptes Rendus Biologies, 333(1), 61–67. https://doi.org/10.1016/j.crvi.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  4. Qi, D., Hu, T., & Liu, T. (2020). Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation. Agricultural Water Management, 230, 105981. https://doi.org/10.1016/j.agwat.2019.105981.

    Article  Google Scholar 

  5. Kelly, S. J., Cano, M. G., Fanello, D. D., Tambussi, E. A., & Guiamet, J. J. (2021). Extended photoperiods after flowering increase the rate of dry matter production and nitrogen assimilation in mid maturing soybean cultivars. Field Crops Research, 265, 108104. https://doi.org/10.1016/j.fcr.2021.108104.

    Article  Google Scholar 

  6. Bhattacharyya, P., Bhaduri, D., Adak, T., Munda, S., Satapathy, B. S., Dash, P. K., & Pathak, H. (2020). Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Industrial Crops and Products, 143, 111919. https://doi.org/10.1016/j.indcrop.2019.111919.

    Article  CAS  Google Scholar 

  7. Mishra, A., Nanda, S., Parida, M. R., Jena, P. K., Dwibedi, S. K., Samantaray, S. M., & Dash, M. (2023). A comparative study on pyrolysis kinetics and thermodynamic parameters of little millet and sunflower stems biomass using thermogravimetric analysis. Bioresource Technology, 367, 128231. https://doi.org/10.1016/j.biortech.2022.128231.

    Article  CAS  PubMed  Google Scholar 

  8. Mishra, A., Sahoo, J. P., Swain, B., Nanda, S., Mishra, T. K., Dwibedi, S. K., & Dash, M. (2023). Biochemical and SSR based molecular characterization of elite rice varieties for straw lignocellulose. Molecular Biology Reports, 50(7), 5535–5545. https://doi.org/10.1007/s11033-023-08454-w.

    Article  CAS  PubMed  Google Scholar 

  9. Mishra, A., Mishra, T. K., Nanda, S., Jena, P. K., Dwibedi, S. K., Jena, B., & Dash, M. (2022). Bioenergy potential of different varieties of paddy straw biomass. Bioresource Technology Reports, 20, 101229. https://doi.org/10.1016/j.biteb.2022.101229.

    Article  CAS  Google Scholar 

  10. Pancaldi, F., van Loo, E. N., Schranz, M. E., & Trindade, L. M. (2022). Genomic architecture and evolution of the cellulose synthase gene superfamily as revealed by phylogenomic analysis. Frontiers in Plant Science, 13, 870818. https://doi.org/10.3389/fpls.2022.870818.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dash, M., Mishra, A., & Mohanty, M. K. (2021). Breeding rice for sustainable bioenergy production. In Integrative advances in rice research. IntechOpen London, United Kingdom. https://doi.org/10.5772/intechopen.98572.

    Chapter  Google Scholar 

  12. Mishra, A., Mishra, T. K., Nanda, S., Mohanty, M. K., & Dash, M. (2023). A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Molecular Biology Reports, 50(12), 10509–10524. https://doi.org/10.1007/s11033-023-08886-4.

    Article  CAS  PubMed  Google Scholar 

  13. Mishra, A., Mishra, T. K., Swain, B., Priyadarsini, A., Nanda, S., Dwibedi, S. K., & Dash, M. (2023). Molecular heterosis for biomass and biofuel related traits in rice. Cereal Research Communications, 1–18. https://doi.org/10.1007/s42976-023-00454-7.

  14. Nanda, S., Swain, B., Priyadarsini, A., Mishra, A., Parida, M. R., Jena, P. K., & Dash, M. (2024). Thermodynamic, spectroscopic, and molecular characterization of rice straw biomass for use as biofuel feedstock. The Canadian Journal of Chemical Engineering. https://doi.org/10.1002/cjce.25174.

    Article  Google Scholar 

  15. Priyadarsini, A., Swain, B., Mishra, A., Nanda, S., Dash, M., Swain, N., & Mohanty, M. K. (2023). Study on biofuel efficiency of tropical banana leaf biomass using spectroscopy, kinetic and thermodynamic parameters. Bioresource Technology Reports, 23, 101522. https://doi.org/10.1016/j.biteb.2023.101522.

    Article  CAS  Google Scholar 

  16. Mishra, R. K., & Mohanty, K. (2018). Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conversion and Biorefinery, 8, 799–812. https://doi.org/10.1007/s13399-018-0332-8.

    Article  CAS  Google Scholar 

  17. Peretz, R., Mamane, H., Sterenzon, E., & Gerchman, Y. (2019). Rapid quantification of cellulose nanocrystals by Calcofluor White fluorescence staining. Cellulose, 26, 971–977. https://doi.org/10.1007/s10570-018-2162-z.

    Article  CAS  Google Scholar 

  18. Liu, B., Tang, L., Chen, Q., Zhu, L., Zou, X., Li, B., & Lu, Y. (2022). Lignin distribution on Cell Wall Micro-morphological regions of Fibre in Developmental Phyllostachys pubescens Culms. Polymers, 14(2), 312. https://doi.org/10.3390/polym14020312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Falcioni, R., Moriwaki, T., Furlanetto, R. H., Nanni, M. R., & Antunes, W. C. (2022). Simple, fast and efficient methods for analysing the structural, ultrastructural and cellular components of the cell wall. Plants, 11(7), 995. https://doi.org/10.3390/plants11070995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jablonský, M., Dubinyová, L., Varga, Š., Vizárová, K., Šima, J., & Katuščák, S. (2015). Cellulose fibre identification through color vectors of stained fibre. Bioresources, 10(3), 5845–5862.

    Article  Google Scholar 

  21. Ahmed, M., El-Zayat, S., & El-Sayed, M. (2018). Cellulolytic activity of cellulose-decomposing fungi isolated from Aswan hot desert soil. Egypt Journal of Biological Studies, 1(2), 35–48. https://doi.org/10.62400/jbs.v1i2.9.

    Article  Google Scholar 

  22. Li, Q., Nie, S., Li, G., Du, J., Ren, R., Yang, X., & Pan, G. (2022). Identification and fine mapping of the recessive gene BK-5, which affects cell wall biosynthesis and plant brittleness in maize. International Journal of Molecular Sciences, 23(2), 814. https://doi.org/10.3390/ijms23020814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gui, J., Shen, J., & Li, L. (2011). Functional characterization of evolutionarily divergent 4-coumarate: Coenzyme a ligases in rice. Plant Physiology, 157(2), 574–586. https://doi.org/10.1104/pp.111.178301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi, S., Zhang, X., Ma, Z., Wu, D., Tan, Z., Zhang, B., & Wang, M. (2022). Brittle culm 15 mutation alters carbohydrate composition, degradation and methanogenesis of rice straw during in vitro ruminal fermentation. Frontiers in Plant Science, 13, 975456. https://doi.org/10.3389/fpls.2022.975456.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu, S., Zhang, M., Ye, J., Hu, D., Zhang, Y., Li, Z., & Yang, Y. (2023). Brittle culm 25, which encodes an UDP-xylose synthase, affects cell wall properties in rice. The Crop Journal, 11(3), 733–743. https://doi.org/10.1016/j.cj.2022.11.011.

    Article  Google Scholar 

  26. Ma, X., Li, C., Huang, R., Zhang, K., Wang, Q., Fu, C., & Deng, X. (2021). Rice Brittle Culm19 encoding cellulose synthase subunit CESA4 causes dominant brittle phenotype but has no distinct influence on growth and grain yield. Rice, 14, 1–12. https://doi.org/10.1186/s12284-021-00536-2.

    Article  CAS  Google Scholar 

  27. Tian, J., Li, S., Xing, Z., Cheng, S., Guo, B., Hu, Y., & Zhang, H. (2022). Differences in rice yield and biomass accumulation dynamics for different direct seeding methods after wheat straw return. Food and Energy Security, 11(4), e425. https://doi.org/10.1002/fes3.425.

    Article  CAS  Google Scholar 

  28. Keller, B., Zimmermann, L., Rascher, & Muller, O. (2022). Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. Plant Physiology, 188(1), 301–317. https://doi.org/10.1093/plphys/kiab483.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y., Su, L., Wang, Q., Zhang, J., Shan, Y., & Deng, M. (2020). Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Advances in Agronomy, 159, 237–273. https://doi.org/10.1016/bs.agron.2019.07.007.

    Article  Google Scholar 

  30. Ain, N. U., Haider, F. U., Fatima, M., Zhou, Y., & Ming, R. (2022). Genetic determinants of biomass in C4 crops: Molecular and agronomic approaches to increase biomass for biofuels. Frontiers in Plant Science, 13, 839588. https://doi.org/10.3389/fpls.2022.839588.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Courtois, B., Frouin, J., Greco, R., Bruschi, G., Droc, G., Hamelin, C., & Ahmadi, N. (2012). Genetic diversity and population structure in a European collection of rice. Crop Science, 52(4), 1663–1675. https://doi.org/10.2135/cropsci2011.11.0588.

    Article  Google Scholar 

  32. Nachimuthu, V. V., Robin, S., Sudhakar, D., Rajeswari, S., Raveendran, M., Subramanian, K. S., & Pandian, B. A. (2014). Genotypic variation for micronutrient content in traditional and improved rice lines and its role in biofortification programme. Indian Journal of Science and Technology, 1414–1425. https://doi.org/10.17485/ijst/2014/v7i9/59484.

Download references

Acknowledgements

The authors acknowledge the BPCL-OUAT Biofuel project implemented in OUAT, Bhubaneswar, India, for technical support. The study is a part of the Ph.D. research work of the first author.

Funding

This study was supported by the Bharat Petroleum Corporation Limited, New-Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Conceptualization and data interpretation were done by Abinash Mishra and Manasi Dash. Material preparation, conduct of experiment, data collection, and analysis were performed by Spandan Nanda, Tanya Barpanda, Agnija Sibadatta, Pragati Sahu, Priyadarshini Sahu, Pasupuleti Jahnavi, and Amrita Priyadarsini. The first draft of the manuscript was written by Abinash Mishra and checked by Manasi Dash. The funding was facilitated by Mahendra Kumar Mohanty. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Manasi Dash.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Dash, M., Barpanda, T. et al. A Comprehensive Molecular, Biochemical, Histochemical, and Spectroscopic Characterization of Early and Medium Duration Rice Genotypes Investigating Dry Matter Accumulation Efficiencies. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04950-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04950-2

Keywords

Navigation