Skip to main content
Log in

Isolation and Characterization of Expressed Sequence Tags (ESTs) from Cambium Tissue of Birch (Betula platyphylla Suk)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cloning and identification of genes from the cambium of woody plants are important steps in the investigation of wood formation. In order to clone and identify the genes involved in wood formation, a cDNA library was constructed from the cambial tissue of Betula platyphylla Suk (birch). From the cDNA library, 2,878 high-quality ESTs were generated, representing 1,540 tentative unique genes (TUGs). Approximately 70% of the ESTs were matched to proteins in the NR database in GenBank and were grouped into 12 functional categories according to their functional annotation. Fifty TUGs potentially involved in wood formation, including the process of lignin biosynthesis, cell wall structure, cell wall polysaccharides synthesis or development regulation, were identified from the EST collection. The time course expression analysis of 13 wood formation related genes was further studied using RNA gel blot and semi-quantitative RT-PCR. The results showed that these genes were primarily expressed in tissue that was collected during two time periods, spring (26 April to 11 June) and later summer (30 July to 18 Sept). The bimodal expression curve of the genes indicates that both of these time periods are critical in wood formation in birch, and may be associated with cell wall expansion earlier in the year, and cell wall strengthening later in the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698. doi:10.1073/pnas.95.16.9693

    Article  CAS  PubMed  Google Scholar 

  • Bao W, O'Malley DM, Sederoff RR (1992) Wood contains a cell-wall structural protein. Proc Natl Acad Sci USA 89:6604–6608. doi:10.1073/pnas.89.14.6604

    Article  CAS  PubMed  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350. doi:10.1080/10409230391036757

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fischer R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311. doi:10.1016/S0981-9428(00)01237-7

    Article  CAS  Google Scholar 

  • Darley CP, Forrester AM, McQueen-Mason SJ (2001) The molecular basis of plant cell wall extension. Plant Mol Biol 47:179–195. doi:10.1023/A:1010687600670

    Article  CAS  PubMed  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70. doi:10.1016/j.tplants.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  • Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT (2005) The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221:739–746. doi:10.1007/s00425-005-1498-4

    Article  CAS  PubMed  Google Scholar 

  • Goldberg R, Liberman M, Mathieu C, Pierron M, Catesson AM (1987) Development of epidermal cell wall peroxidases along the mung bean hypocotyl: possible involvement in the cell wall stiffening process. J Exp Bot 38:1378–1390

    Article  CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516. doi:10.1021/bm800528f

    Article  CAS  PubMed  Google Scholar 

  • Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B, Mellerowicz EJ (2008) Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnol J 6:62–72. doi:10.1111/j.1467-7652.2007.00295.x

    CAS  PubMed  Google Scholar 

  • Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguière C, Girardot AL, Garnier J, Hoareau A, Bachère E, Escoubas JM (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster. Gene 303:139–145. doi:10.1016/S0378-1119(02)01149-6

    Article  CAS  PubMed  Google Scholar 

  • Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135(1):212–220. doi:10.1104/pp.104.038927

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737. doi:10.1073/pnas.261293398

    Article  CAS  PubMed  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812. doi:10.1038/11758

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877. doi:10.1101/gr.9.9.868

    Article  CAS  PubMed  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229. doi:10.1016/S1369-5266(02)00257-1

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Ralph J, Yahiaoui N, Pean M, Boudet AM (2000) Cross-coupling of hydroxycinnamyl aldehydes into lignins. Org Lett 2:2197–2200. doi:10.1021/ol005906o

    Article  CAS  PubMed  Google Scholar 

  • Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal CG, Saranpää P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328. doi:10.1007/s00425-005-1498-4

    Article  CAS  PubMed  Google Scholar 

  • Lapierre C, Pilate G, Pollet B, Mila I, Leplé JC, Jouanin L, Kim H, Ralph J (2004) Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. Phytochemistry 65:313–321. doi:10.1016/j.phytochem.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  • Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581. doi:10.1111/j.1365-313X.2008.03457.x

    Article  CAS  PubMed  Google Scholar 

  • Ma QH (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot 58:2011–2021. doi:10.1093/jxb/erm064

    Article  CAS  PubMed  Google Scholar 

  • Marjamaa K, Kukkola E, Lundell T, Karhunen P, Saranpää P, Fagerstedt KV (2006) Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula). Tree Physiol 26:605–611. doi:10.1093/treephys/26.5.605

    CAS  PubMed  Google Scholar 

  • Martz F, Maury S, Pinçon G, Legrand M (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36:427–437. doi:10.1023/A:1005969825070

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300. doi:10.1016/j.pbi.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  • O'Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 11:495–503. doi:10.1023/A:1020362705497

    Article  PubMed  Google Scholar 

  • Park S, Han KH (2003) An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation. Tree Physiol 23:815–823. doi:10.1093/treephys/23.12.815

    CAS  PubMed  Google Scholar 

  • Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Mol Biol 55:263–280. doi:10.1007/s11103-004-0621-4

    Article  CAS  PubMed  Google Scholar 

  • Pavy N, Paule C, Parsons L, Crow JA, Morency MJ, Cooke J, Johnson JE, Noumen E, Guillet-Claude C, Butterfield Y, Barber S, Yang G, Liu J, Stott J, Kirkpatrick R, Siddiqui A, Holt R, Marra M, Seguin A, Retzel E, Bousquet J, MacKay J (2005) Generation, annotation, analysis and database integration of 16, 500 white spruce EST clusters. BMC Genomics 6:144. doi:10.1186/1471-2164-6-144

    Article  PubMed  Google Scholar 

  • Reddy AS, Poovaiah BW (1990) Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene. Plant Mol Biol 14:127–136

    Article  CAS  PubMed  Google Scholar 

  • Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373. doi:10.1126/science.279.5355.1371

    Article  CAS  PubMed  Google Scholar 

  • Samuga A, Joshi CP (2002) A new cellulose synthase gene (PtrCesA2) from aspen xylem is orthologous to Arabidopsis AtCesA7 (irx3) gene associated with secondary cell wall synthesis. Gene 296:37–44. doi:10.1016/S0378-1119(02)00864-8

    Article  CAS  PubMed  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1, 4-β-glucanase (cel1). Mol Breed 14:321–330. doi:10.1023/B:MOLB.0000049213.15952.8a

    Article  Google Scholar 

  • Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lesniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565. doi:10.1104/pp.107.111963

    Article  CAS  PubMed  Google Scholar 

  • Stafstrom JP, Ripley BD, Devitt ML, Drake B (1998) Dormancy-associated gene expression in pea axillary buds. Cloning and expression of PsDRM1 and PsDRM2. Planta 205:547–552. doi:10.1007/s004250050354

    Article  CAS  PubMed  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlén M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5, 692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    Article  CAS  PubMed  Google Scholar 

  • Tan K-S, Hoson T, Masuda Y, Kamisaka S (1992) Involvement of cell wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol 33:103–108

    CAS  Google Scholar 

  • Ujino-Ihara T, Yoshimura K, Ugawa Y, Yoshimaru H, Nagasaka K, Tsumura Y (2000) Expression analysis of ESts derived from the inner bark of Cryptomeria japonica. Plant Mol Biol 43:451–457. doi:10.1023/A:1006492103063

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868. doi:10.1126/science.276.5320.1865

    Article  CAS  PubMed  Google Scholar 

  • van der Rest B, Danoun S, Boudet AM, Rochange SF (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411. doi:10.1093/jxb/erj120

    Article  PubMed  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285. doi:10.1016/j.pbi.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  • Weng JK, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA 105:7887–7892. doi:10.1073/pnas.0801696105

    Article  CAS  PubMed  Google Scholar 

  • Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 7:461–467. doi:10.1016/S1360-1385(02)02335-X

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Park S, Kamdem DP, Keathley DE, Retzel E, Paule C, Kapur V, Han KH (2003) Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia. Plant Mol Biol 52:935–956. doi:10.1023/A:1025445427284

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, van Zyl L, No EG, Loopstra CA (2004) Microarray analysis of genes preferentially expressed in differentiating xylem of loblolly pine (Pinus taeda). Plant Sci 166:1185–1195. doi:10.1016/j.plantsci.2003.12.030

    Article  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2006) Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls. J Plant Res 119:189–194. doi:10.1007/s10265-006-0261-7

    Article  CAS  PubMed  Google Scholar 

  • Zhao HY, Lu J, Lu SY, Zhou YH, Wei JH, Song YR, Wang T (2005) Isolation and functional characterization of a cinnamate 4-hydroxylase promoter from Populus tomentosa. Plant Sci 168:1157–1162. doi:10.1016/j.plantsci.2004.12.022

    Article  CAS  Google Scholar 

  • Zhong R, Morrison WH 3rd, Freshour GD, Hahn MG, Ye ZH (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 132:786–795. doi:10.1104/pp.102.019331

    Article  CAS  PubMed  Google Scholar 

  • Zhou GK, Zhong R, Richardson EA, Morrison WH 3rd, Nairn CJ, Wood-Jones A, Ye ZH (2006) The poplar glycosyltransferase GT47C is functionally conserved with Arabidopsis Fragile fiber8. Plant Cell Physiol 47:1229–1240. doi:10.1093/pcp/pcj093

    Article  CAS  PubMed  Google Scholar 

  • Zhou GK, Zhong R, Himmelsbach DS, McPhail BT, Ye ZH (2007) Molecular characterization of PoGT8D and PoGT43B, two secondary wall-associated glycosyltransferases in poplar. Plant Cell Physiol 48:689–699. doi:10.1093/pcp/pcm037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Foundation of Heilongjiang Province (No. C200803), Heilongjiang Province International Scientific and Technological Cooperation Project (WB07N02), and National Key Technology R&D Project (2006BAD01A1603, 2006BAD24B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, Y., Diao, G. et al. Isolation and Characterization of Expressed Sequence Tags (ESTs) from Cambium Tissue of Birch (Betula platyphylla Suk). Plant Mol Biol Rep 28, 438–449 (2010). https://doi.org/10.1007/s11105-009-0172-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0172-6

Keywords

Navigation