Skip to main content
Log in

The Rice Light-Regulated Gene RA68 Encodes a Novel Protein Interacting with Oxygen-Evolving Complex PsbO Mature Protein

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The oxygen-evolving complex (OEC), which is located on the luminal side of photosystem II, plays an important role in water oxidation. It is generally considered that OEC consists of the Mn4Ca cluster and three extrinsic proteins, PsbO, PsbP, and PsbQ. In this study, we report that a novel rice protein RA68 interacts with PsbO. RA68 is expressed preferentially in seedlings and encodes a novel protein without significant homology with any other proteins. Northern analysis demonstrates that RA68 is a light-regulated gene with a diurnal oscillation pattern under different light conditions. Yeast two-hybrid screening reveals that RA68 interacts with PsbO and PsbP. Further experiments demonstrate that RA68 has specific interaction with PsbO mature protein rather than its precursor form. Moreover, in situ hybridization shows that RA68 and PsbO have similar expression patterns in seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DDO:

double dropout

LD:

long day

LL:

constant light

LREs:

light-regulatory elements

OEC:

oxygen-evolving complex

PSII:

photosystem II

QDO:

quadruple dropout

SD:

short day

TDO:

triple dropout

References

  • Ban A, Satoh K, Kashino Y (2006) PsbY is crucial for the stable binding of extrinsic proteins in photosystem II. Plant Cell Physiol 47(Suppl):s162

    Google Scholar 

  • Bricker T, Ghanotakis D (2004) Introduction to oxygen evolution and the oxygen-evolving complex. In: Ort D, Yocum C, Heichel I (eds) Oxygenic photosynthesis: the light reactions. Springer, Netherlands, pp 113–136

    Chapter  Google Scholar 

  • Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR (1988) Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J 7:1929–1936

    CAS  PubMed  Google Scholar 

  • Chia CP, Arntzen CJ (1986) Evidence for two-step processing of nuclear-encoded chloroplast proteins during membrane assembly. J Cell Biol 103:725–731. doi:10.1083/jcb.103.3.725

    Article  CAS  PubMed  Google Scholar 

  • Ding Zj, Wu Xh, Wang T (2002) The rice tapetum-specific gene RA39 encodes a type I ribosome-inactivating protein. Sex Plant Reprod 15:205–212. doi:10.1007/s00497-002-0156-2

    Article  CAS  Google Scholar 

  • Dyrlov Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795. doi:10.1016/j.jmb.2004.05.028

    Article  CAS  Google Scholar 

  • Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2:369–378

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85:7089–7093. doi:10.1073/pnas.85.19.7089

    Article  CAS  PubMed  Google Scholar 

  • Gray J (2004) Regulation of expression of nuclear genes encoding polypeptides required for the light reactions of photosynthesis. In: Ort D, Yocum C, Heichel I (eds) Oxygenic photosynthesis: the light reactions. Springer, Netherlands, pp 621–641

    Chapter  Google Scholar 

  • Green PJ, Yong MH, Cuozzo M, Kano-Murakami Y, Silverstein P, Chua NH (1988) Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J 7:4035–4044

    CAS  PubMed  Google Scholar 

  • Hager M, Hermann M, Biehler K, Krieger-Liszkay A, Bock R (2002) Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. J Biol Chem 277:14031–14039. doi:10.1074/jbc.M112053200

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Morris E, Nield J, Carne A, Barber J (2001) Subunit positioning and transmembrane helix organisation in the core dimer of photosystem II. FEBS Lett 504:142–151. doi:10.1016/S0014-5793(01)02766-1

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. doi:10.1093/nar/27.1.297

    Article  CAS  PubMed  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616. doi:10.1104/pp.103.030437

    Article  CAS  PubMed  Google Scholar 

  • Juncker AS, Willenbrock H, von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein Sci 12:1652–1662. doi:10.1110/ps.0303703

    Article  CAS  PubMed  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012. doi:10.1021/bi026012+

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi:10.1093/nar/30.1.325

    Article  CAS  PubMed  Google Scholar 

  • Miyao M, Murata N (1984) Role of the 33-kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride ions. FEBS Lett 170:350–354. doi:10.1016/0014-5793(84)81342-3

    Article  CAS  Google Scholar 

  • Miyao M, Murata N (1989) The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. Biochim Biophys Acta 977:315–321. doi:10.1016/S0005-2728(89)80086-6

    Article  CAS  Google Scholar 

  • Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J 29:1–10. doi:10.1046/j.0960-7412.2001.01188.x

    Article  CAS  PubMed  Google Scholar 

  • Oelmüller R, Schneiderbauer A, Herrmann RG, Kloppstech K (1995) The steady-state mRNA levels for thylakoid proteins exhibit coordinate diurnal regulation. Mol Gen Genet 246:478–484. doi:10.1007/BF00290451

    Article  PubMed  Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206

    CAS  PubMed  Google Scholar 

  • Roose J, Wegener K, Pakrasi H (2007) The extrinsic proteins of photosystem II. Photosynth Res 92:369–387. doi:10.1007/s11120-006-9117-1

    Article  CAS  PubMed  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 1277:35–60

    Article  PubMed  Google Scholar 

  • Shi L-X, Schroder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608:75–96

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Aro EM (2007) Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth Res 93:89–100. doi:10.1007/s11120-007-9154-4

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Regel RE, Paakkarinen V, Battchikova N, Herrmann RG, Aro EM (2004) Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. Eur J Biochem 271:96–107. doi:10.1046/j.1432-1033.2003.03906.x

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Sirpio S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S, Aro EM (2006) PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem 281:145–150. doi:10.1074/jbc.M510600200

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474. doi:10.1146/annurev.pp.46.060195.002305

    Article  CAS  Google Scholar 

  • Thompson WF, White MJ (1991) Physiological and molecular studies of light-regulated nuclear genes in higher plants. Annu Rev Plant Physiol Plant Mol Biol 42:423–466. doi:10.1146/annurev.pp.42.060191.002231

    Article  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175. doi:10.1105/tpc.104.023515

    Article  CAS  PubMed  Google Scholar 

  • Westhoff P, Jansson C, Klein-Hitpaß L, Berzborn R, Larsson C, Bartlett S (1985) Intracellular coding sites of polypeptides associated with photosynthetic oxygen evolution of photosystem II. Plant Mol Biol 4:137–146. doi:10.1007/BF02418761

    Article  CAS  Google Scholar 

  • Wu X, Wang T (2004) Molecular characterization of RA68 related potentially to rice flower development. Chin Sci Bull 14:1476–1480. doi:10.1360/03wc0554

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese Ministry of Sciences and Technology Grant 2006CB910105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Gong, C. & Wang, T. The Rice Light-Regulated Gene RA68 Encodes a Novel Protein Interacting with Oxygen-Evolving Complex PsbO Mature Protein. Plant Mol Biol Rep 28, 136–143 (2010). https://doi.org/10.1007/s11105-009-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0128-x

Keywords

Navigation