Skip to main content
Log in

Characterization of an Oxidative Stress Inducible Nonspecific Lipid Transfer Protein Coding cDNA and its Promoter from Drought Tolerant Plant Prosopis juliflora

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Abiotic stress is the principal cause of crop failure worldwide. Prosopis juliflora is a hardy plant reported to be tolerant to drought, salinity, extremes of soil pH, and heavy metal stress. Here, we report the characterization of a cDNA clone for a putative nonspecific lipid transfer protein (Pj LTP1) found abundantly in a drought stressed leaf cDNA library of P. juliflora and its promoter. A multiple sequence analysis of Pj LTP1 with well-established and officially designated nonspecific lipid transfer proteins allergens revealed high similarity at the amino acid level. Northern analysis of Pj LTP1 in P. juliflora leaves under oxidative stress revealed steady upregulation at the time points analyzed. A 929-bp fragment was isolated from the 5′ end of Pj LTP1, and transient reporter gene expression studies revealed it to be a functional promoter. Several cis-acting elements previously reported to function in stress response were found in this promoter. The possible reasons for changes in gene expression during stress in relation to the host plant’s stress tolerance mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 9:1859–1868

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol. 215:403–410

    CAS  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 24:701–713. doi:10.1007/BF00029852

    Article  CAS  PubMed  Google Scholar 

  • Bauer MA, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35:237–240. doi:10.1093/nar/gkl951

    Article  Google Scholar 

  • Blein JP, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci. 7:293–296. doi:10.1016/S1360-1385(02)02284-7

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126:1024–1030. doi:10.1104/pp.126.3.1024

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science. 218:443–448. doi:10.1126/science.218.4571.443

    Article  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. Chapter 22. In: Gruissem W, Buchannan B, Jones R (eds) Responses to abiotic stresses. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume BF, Milat ML, Ponchet M, Mikès V, Kader JC, Blein JP (2001) A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett. 509:27–30. doi:10.1016/S0014-5793(01)03116-7

    Article  CAS  PubMed  Google Scholar 

  • Burkart A, Simpson BB (1977) The genus Prosopis and annoted key to the species of the world. In: Simpson BB (ed) Mesquite: Its Biology in Two Desert Ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, pp 201–215

    Google Scholar 

  • Carvalho AO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides. 28:1144–1153. doi:10.1016/j.peptides.2007.03.004

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162:156–159. doi:10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  • Da Silva P, Landon C, Industri B, Marais A, Marion D, Ponchet M, Vovelle F (2005) Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins. 59:356–367. doi:10.1002/prot.20405

    Article  PubMed  Google Scholar 

  • Douliez JP, Michon T, Elmorjani K, Marion D (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci. 32:1–20. doi:10.1006/jcrs.2000.0315

    Article  CAS  Google Scholar 

  • Drake H (1993) Trees for dry lands. Scientific, New York, p 370

    Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene Non-climacteric fruit ltp1 gene 1875 (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564. doi:10.1023/A:1006098132352

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S (2000) Gunnar von Heijne. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 300:1005–1016. doi:10.1006/jmbi.2000.3903

    CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199–206. doi:10.1016/S1360-1385(00)01600-9

    Article  CAS  PubMed  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 122:655–657. doi:10.1104/pp. 122.3.657

    Article  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 134:1080–1087. doi:10.1104/pp.103.035998

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana, New York, pp 571–607

    Chapter  Google Scholar 

  • Geilfus F. (1994) El árbol al servicio del agricultor. Guía de especies. Turrialba, Costa Rica: Enda-Caribe-Centro Agronómico Tropical de Investigación y Enseñanza. 597, Vol. 2

  • George S, Venkataraman G, Parida A (2007) Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags. Genome 50:470–478. doi:10.1139/G07-014

    Article  CAS  PubMed  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell. 16:1077–1090. doi:10.1105/tpc.019729

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27:97–300. doi:10.1093/nar/27.1.297

    Article  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res. 9:868–877. doi:10.1101/gr.9.9.868

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 30:679–684. doi:10.1007/BF00049344

    Article  CAS  PubMed  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Ajay Parida (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25(8):865–876. doi:10.1007/s00299-006-0127-4

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1996) lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 47:627–654. doi:10.1146/annurev.arplant.47.1.627

    Article  CAS  PubMed  Google Scholar 

  • Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem. 139:410–411. doi:10.1111/j.1432-1033.1984.tb08020.x

    Article  Google Scholar 

  • Lee JY, Min K, Cha H, Shin DH, Hwang KY, Suh SW (1998) Rice non-specific lipid transfer protein: the 1.6 A ° crystal structure in the un liganded state reveals a small hydrophobic cavity. J Mol Biol 276:437–448. doi:10.1006/jmbi.1997.1550

    Article  CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixonk RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature. 419:399–403. doi:10.1038/nature00962

    Article  CAS  PubMed  Google Scholar 

  • Marion D, Douliez JP, Gautier MF, Elmorjani K (2004) Plant lipid transfer proteins: relationships between allergenicity and structural, biological and technological properties. In: Mills ENC, Shewry SPW (eds) Plant Food Allergens. Blackwell, Oxford, pp 57–69

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nielsen H (1997) Jacob Engelbrecht, Soren Brunak. Gunnar von Heijne. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1–6. doi:10.1093/protein/10.1.1

    CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression. J Biol Chem. 279:55355–55361. doi:10.1074/jbc.M409674200

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA et al (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell. 12:151–164

    Article  CAS  PubMed  Google Scholar 

  • Pastorello EA, Farioli L, Pravettoni V, Ortolani C, Ispano M, Monza M, Baroglio C, Scibola E, Ansaloni R, Incorvaia C, Conti A (1999a) The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol. 103:520–526. doi:10.1016/S0091-6749(99)70480-X

    Article  CAS  Google Scholar 

  • Pastorello EA, Pravettoni V, Farioli L, Ispano M, Fortunato D, Monza M, Giuffrida MG, Rivolta F, Scibola E, Ansaloni R, Incorvaia C, Conti A, Ortolani C (1999b) Clinical role of a lipid transfer protein that acts as a new apple-specific allergen. J Allergy Clin Immunol. 104:1099–1106. doi:10.1016/S0091-6749(99)70095-3

    Article  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116:409–418. doi:10.1104/pp.116.1.409

    Article  CAS  PubMed  Google Scholar 

  • Rico M, Bruix M, Gonzalez C, Monsalve RI, Rodriguez R (1996) 1H NMR assignment and global fold of napin BnIb, a representative 2 S albumin seed protein. Biochemistry. 35:15672–15682. doi:10.1021/bi961748q

    Article  CAS  PubMed  Google Scholar 

  • Salcedo G, Sánchez-Monge R, Barber D, Díaz-Perales A (2007) Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta Jun 1771:781–791

    CAS  Google Scholar 

  • Sanchez-Monge R, Lombardero M, Garcia-Selles FJ, Barber D, Salcedo G (1999) Lipid-transfer proteins are relevant allergens in fruit allergy. J Allergy Clin Immunol. 103:514–519. doi:10.1016/S0091-6749(99)70479-3

    Article  CAS  PubMed  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell. 14:2985–2994. doi:10.1105/tpc.004630

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Lee JY, Hwang KY, Kim KK, Suh SW (1995) High resolution crystal-structure of the nonspecific lipid-transfer protein from maize seedlings. Structure. 3:189–199. doi:10.1016/S0969-2126(01)00149-6

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol. 7:161–167. doi:10.1016/S0958-1669(96)80007-3

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Biotechnol. 3:217–223

    CAS  Google Scholar 

  • Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot. 55:2111–2120. doi:10.1093/jxb/erh229

    Article  CAS  PubMed  Google Scholar 

  • Soufleri IA, Vergnolle C, Miginiac E, Kader JC (1996) Germination- specific lipid transfer protein cDNAs in Brassica napus L. Planta. 199:229–237. doi:10.1007/BF00196563

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell. 15:2076–2092. doi:10.1105/tpc.014597

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi S, Osafune T, Tsugeki R, Nishimura M, Yamada M (1992) Nonspecific lipid transfer protein in castor bean cotyledons cells: subcellular localization and a possible role in lipid metabolism. J Biochem. 111:500–508

    CAS  PubMed  Google Scholar 

  • Tusnády GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 283:489–506. doi:10.1006/jmbi.1998.2107

    Article  PubMed  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics. 17:849–850. doi:10.1093/bioinformatics/17.9.849

    Article  PubMed  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112:1703–1714. doi:10.1104/pp.112.4.1703

    Article  PubMed  Google Scholar 

  • Wang C, Xie W, Chi F, Hu W, Mao G, Sun D, Li C, Sun Y (2007) BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Rep. 27:159–169. doi:10.1007/s00299-007-0434-4

    Article  CAS  PubMed  Google Scholar 

  • Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol. 40:1–12. doi:10.1023/A:1026459229671

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J. 21:281–288. doi:10.1046/j.1365-313x.2000.00685.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was carried out with a grant from Department of Biotechnology (DBT), Government of India. Ms. Suja George is a Senior Research Fellow of the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Parida.

Elecronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Multiple sequence alignment of first 100 hits from Pj LTP1 BLASTX analysis at NCBI (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, S., Parida, A. Characterization of an Oxidative Stress Inducible Nonspecific Lipid Transfer Protein Coding cDNA and its Promoter from Drought Tolerant Plant Prosopis juliflora . Plant Mol Biol Rep 28, 32–40 (2010). https://doi.org/10.1007/s11105-009-0127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0127-y

Keywords

Navigation