Skip to main content
Log in

Root Growth of Arabidopsis thaliana Is Regulated by Ethylene and Abscisic Acid Signaling Interaction in Response to HrpNEa, a Bacterial Protein of Harpin Group

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

HrpNEa is a harpin protein from Erwinia amylovora, a bacterial pathogen that causes fire blight in rosaceous plants. Treating plants with HrpNEa stimulates ethylene and abscisic acid (ABA) to induce plant growth and drought tolerance, respectively. Herein, we report that both growth hormones cooperate to mediate the role of HrpNEa in promoting root growth of Arabidopsis thaliana seedlings. Root growth is promoted coordinately with elevation in levels of ABA and ethylene subsequent to soaking of germinating seeds of wild-type (WT) Arabidopsis in a solution of HrpNEa. However, these responses are arrested by inhibiting WT roots from synthesizing ethylene as well as sensing of ABA and ethylene. The effects of HrpNEa on roots are also nullified in ethylene-insensitive etr1-1 and ein5-1 mutants and in the ABA-insensitive mutant abi2-1 of Arabidopsis. These results provide evidence for presence of a relationship between root growth enhancement and signaling by ABA and ethylene in response to HrpNEa. Nevertheless, when HrpNEa is applied to leaves, ethylene signaling is active in the absence of ABA signaling to promote plant growth. This suggests the presence of a different signaling mechanism in leaves from that in roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

AOA:

amonoxyacetic acid

EVP:

empty vector preparation containing inactive proteins but no HrpNEa

Fld:

fluridone, an inhibitor of ABA biosynthesis

HrpNEa :

a harpin protein produced by Erwinia amylovora that causes fire blight of rosaceous plants

1-MCP:

1-methylcyclopropene, an inhibitor of ethylene perception

NDGA:

nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis

PT:

posttreatment

References

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 2003;15:2816−25.

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 1999;11:1785−98.

    Article  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004;16:3460−79.

    Article  PubMed  CAS  Google Scholar 

  • Bauer DW, Wei ZM, Beer SV, Collmer A. Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant–Microbe Interact 1995;8:484−91.

    PubMed  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 2000;12:1103−15.

    Article  PubMed  Google Scholar 

  • Bewley JD. Seed germination and dormancy. Plant Cell 1997;9:1055−66.

    Article  Google Scholar 

  • Bostock RM. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 2005;43:480−545.

    Article  CAS  Google Scholar 

  • Brocard-Gifford IM, Lynch TJ, Finkelstein RR. Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 2003;131:78−92.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Qian J, Qu SP, Long JY, Yin Q, Zhang CL, Wu XJ, Sun F, Wu TQ, Beer SV, Dong HS. Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 2008a;98 (in press); refer to http://apsjournals.apsnet.org/page/journal/forthcoming.jsp?journalCode=phyto.

  • Chen L, Zhang SS, Qu SP, Long JY, Yin Q, Qian J, Sun F, Zhang SJ, Zhang CL, Wang LX, Wu XJ, Wu TQ, Zhang ZK, Cheng ZQ, Beer SV, Dong HS. A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology 2008b;98 (in press); refer to http://apsjournals.apsnet.org/page/journal/forthcoming.jsp?journalCode=phyto.

  • Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 2005;42:35−48.

    Article  PubMed  CAS  Google Scholar 

  • Clark MS. Plant molecular biology, a laboratory manual. Berlin: Springer; 1997.

    Google Scholar 

  • Debeaujon I, Koornneef M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 2000;122:415−24.

    PubMed  Google Scholar 

  • Dong HS, Delaney TP, Bauer DW, Beer SV. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 1999;20:207−15.

    Article  PubMed  Google Scholar 

  • Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong HS. Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 2004;136:3628−38.

    Article  PubMed  CAS  Google Scholar 

  • Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen GY, Qu SP, Dong HS. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 2005;221:313−27.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Somerville CR. Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 1990;94:1172−79.

    Article  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002;14:S15−45.

    PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 2000;12:1117−26.

    Article  PubMed  Google Scholar 

  • Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 2005;8:93−102.

    Article  PubMed  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 1999;11:1897−910.

    Article  PubMed  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV. Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 2005;8:183−87.

    Article  CAS  Google Scholar 

  • Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 2004;7:40−9.

    Article  PubMed  CAS  Google Scholar 

  • Guzmán P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 1990;2:513−23.

    Article  PubMed  Google Scholar 

  • Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 2000;123:1449−58.

    Article  PubMed  Google Scholar 

  • Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K. The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 2004;23:3290−302.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle RH. Statistical strategies for small sample research. Thousand Oaks: Sage; 1999.

    Google Scholar 

  • Karssen CM, Brinkhorat-vanderswan DLC, Breekland AE, Koorneef M. Induction of dormancy during seed development by endogenous abscisic acid. Studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 1983;157:158−65.

    Article  Google Scholar 

  • Kepczynski J, Kepczyska E. Ethylene in seed dormancy and germination. Physiol Plant 1997;101:720−6.

    Article  Google Scholar 

  • Kim JF, Beer SV. hrp genes and harpins of Erwinia amylovora: a decade of discovery. In: Vanneste JL, editor. Fire blight and its causative agent, Erwinia amylovora. Wallingford: CAB International; 2000. p. 141−62.

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol 2002;5:33−6.

    Article  PubMed  Google Scholar 

  • Leo-Kloosterziel KM, van der Bunt GA, Zeevaart JAD, Koornneet M. Arabidopsis mutants with reduced dormancy. Plant Physiol 1996;110:233−40.

    Article  Google Scholar 

  • Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 1997;9:759−71.

    Article  PubMed  Google Scholar 

  • Li X, La Motte GE, Stewart CR, Cloud NP, Wear-Bagnall S, Jiang C-Z. Determination of IAA and ABA in the same plant sample by a widely applicable method using GC–MS with selected ion monitoring. J Plant Growth Regul 2006;11:55–65.

    Google Scholar 

  • Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, Dong H. The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology 2006;96:1052−9.

    PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F. The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 2005;8:409−14.

    PubMed  Google Scholar 

  • Meyer K, Leube MP, Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 1994;264:1452−5.

    Article  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A. ABA action and interactions in seeds. Trends Plant Sci 2003;8:213−7.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 2003;15:1591−604.

    Article  PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR. ETHYLENE-INSENSITIVE5 encodes a 5¢→3¢ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci U S A 2006;103:13286−93.

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 2005;17:1105−19.

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Dong H, Dong HP, Delaney TP, Bonasera JM, Beer SV. Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol 2003;62:317−26.

    Article  CAS  Google Scholar 

  • Peng J, Bao Z, Ren H, Wang J, Dong H. Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 2004a;94:1048−55.

    Article  PubMed  Google Scholar 

  • Peng J, Bao Z, Li P, Chen G, Wang J, Dong H. HarpinXoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sinica 2004b;46:1083−90.

    Google Scholar 

  • Perrin RM, Young LS, Murthy UMN, Harrison BR, Wang Y, Will JL, Masson PH. Gravity signal transduction in primary roots. Ann Bot (Lond) 2005;96:737−43.

    Article  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P. The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 2006;18:3047−57.

    Article  PubMed  CAS  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC. Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 2003;132:1424−38.

    Article  PubMed  CAS  Google Scholar 

  • Ren H, Song T, Wu T, Sun L, Liu Y, Yang F, Chen ZY, Dong H. Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-III effector. Ann Microbiol 2006a;56:281−7.

    Article  Google Scholar 

  • Ren H, Gu G, Long J, Yin Q, Wu T, Song T, Zhang SJ, Chen ZY, Dong H. Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. J Biosci 2006b;31:617−27.

    Article  PubMed  Google Scholar 

  • Rock CD, Sun X. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 2005;222:98−106.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999;283:996−8.

    PubMed  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 1995;139:1393−409.

    PubMed  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 1998;95:5812−7.

    Article  PubMed  Google Scholar 

  • Schaller GE, Bleecker AB. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 1995;270:1809−11.

    Article  PubMed  Google Scholar 

  • Stepanova AN, Alonso JM. Ethylene signaling pathway/Arabidopsis ethylene signaling pathway. Sci STKE 2005;276:cm3–4.

    Article  Google Scholar 

  • Strobel RN, Gopalan JS, Kuc JA, He SY. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J 1996;9:431−9.

    Article  Google Scholar 

  • Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell 2002;14:S131−51.

    PubMed  Google Scholar 

  • Wei ZM, Lacy RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 1992;257:85−8.

    Article  PubMed  Google Scholar 

  • Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH. The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant J 2003;34:307−15.

    PubMed  Google Scholar 

  • Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu RX, Gao TC, Dong H. Productivity and biochemical properties of green tea in response to a bacterial type-III effector protein and its variants full length and functional fragments of HpaGXoo, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J Biosci 2007;32:1119−31.

    Article  PubMed  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 2004;16:367−78.

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Qian J, Bao Z, Hong X, Dong H. Abscisic acid mediates Arabidopsis drought tolerance induced by HrpNEa in the absence of ethylene signaling. Plant Mol Biol Rep 2007;25:98−114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Schuyler Korban for critical corrections of the text. We thank the two anonymous reviewers for elaborate suggestions on the manuscript. This study was supported by National Science Foundation for Distinguished Young Scholars (grant no. 30525088), National Development Plan of Key Basic Scientific Studies (973 Plan) Project 2 (2006CB101902), and National Foundation of Natural Sciences (30771441), in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansong Dong.

Additional information

X. Ren and F. Liu contributed equally to this study and are regarded as joint first authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Liu, F., Bao, Z. et al. Root Growth of Arabidopsis thaliana Is Regulated by Ethylene and Abscisic Acid Signaling Interaction in Response to HrpNEa, a Bacterial Protein of Harpin Group. Plant Mol Biol Rep 26, 225–240 (2008). https://doi.org/10.1007/s11105-008-0038-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0038-3

Keywords

Navigation