Skip to main content

Advertisement

Log in

Spatial distribution patterns and controls of bioavailable silicon in coastal wetlands of China

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Silicon (Si) is an essential element for siliceous organisms, including macrophytes, phytoplankton, and diatoms. Coastal wetlands are critical for bridging the river-estuary-ocean continuum to drive the biogeochemical Si cycles. However, it remains unclear about the contents and distribution patterns of bioavailable Si in soils under various scenarios, and their environmental controls in coastal wetlands.

Methods

We conducted a nationwide sampling campaign across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China, and quantified plant available Si (ASi) using calcium chloride extractable Si (Si-CaCl2).

Results

S. alterniflora invasion did not significantly influence ASi content. In contrast, ASi content in the subtropical zone was higher than in the both temperate (medium) and tropical zones (lowest). ASi content was significantly positively correlated with nutrients (i.e., soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP)), soil water content (SWC), clay and silt contents, but negatively with soil bulk density (BD) and sand content. ASi content, in detail, increased with increasing pH (pH < 7) but decreased with increasing pH (pH > 7), showing a quadratic function relationship.

Conclusions

ASi in coastal wetlands was predominately directly influenced by pH, particle size, and nutrients of coastal soil, while vegetation compositions and plant-derived lignin (Λ8) inputs illustrated a minor effect on ASi patterns. Mean annual temperature (MAT) and precipitation (MAP) indirectly regulated ASi content via affecting soil geochemistry and nutrients distribution. Taken together, ASi distribution are mostly controlled by primary pedogenesis and specific weathering processes in China’s coastal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The information that supports this study is available in the Supplementary materials.

References

  • Amann T, Weiss A, Hartmann J (2014) Silica fluxes in the inner Elbe Estuary, Germany. Biogeochemistry 118:389–412

    Article  CAS  Google Scholar 

  • Bastami KD, Hamzepoor A, Raeisi H, Bagheri H, Baniamam M, Rahnama R (2021) Biogenic silica, eutrophication risk and different forms of phosphorus in surface sediments of Anzali wetland, Caspian Sea. Mar Pollut Bull 173:113138

    Article  CAS  PubMed  Google Scholar 

  • Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20(3):GB3023

    Article  Google Scholar 

  • Brady PV, Dorn RI, Brazel AJ, Clark J, Moore RB, Glidewell T (1999) Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering. Geochim Cosmochim Acta 63(19–20):3293–3300

    Article  CAS  Google Scholar 

  • Capellacci S, Battocchi C, Casabianca S, Giovine M, Bavestrello G, Penna A (2013) Bioavailability of different chemical forms of dissolved silica can affect marine diatom growth. Mar Ecol 34(1):103–111

    Article  CAS  Google Scholar 

  • Carey JC, Fulweiler RW (2016) Human appropriation of biogenic silicon–the increasing role of agriculture. Funct Ecol 30(8):1331–1339

    Article  Google Scholar 

  • Caubet M, Cornu S, Saby NP, Meunier JD (2020) Agriculture increases the bioavailability of silicon, a beneficial element for crop, in temperate soils. Sci Rep 10(1):19999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16(4):68-1-68-8

  • Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Glob Change Biol 14(11):2548–2554

    Article  Google Scholar 

  • Conyers MK, Uren NC, Helyar KR (1995) Causes of changes in pH in acidic mineral soils. Soil Biol Biochem 27(11):1383–1392

    Article  CAS  Google Scholar 

  • Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011a) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8(1):89–112

    Article  CAS  Google Scholar 

  • Cornelis JT, Titeux H, Ranger J, Delvaux B (2011b) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342(1):369–378

    Article  CAS  Google Scholar 

  • Cornelis JT, Dumon M, Tolossa AR, Delvaux B, Deckers J, Van Ranst E (2014) The effect of pedological conditions on the sources and sinks of silicon in the Vertic Planosols in south-western Ethiopia. CATENA 112:131–138

    Article  CAS  Google Scholar 

  • de Souza Júnior JP, de Mello Prado R, Campos CNS, Teixeira GCM, Ferreira PM (2022) Nanosilica-mediated plant growth and environmental stress tolerance in plants: mechanisms of action. In: Silicon and Nano-silicon in environmental stress management and crop quality improvement. Academic Press, Manhattan, NY, pp 325–337

  • de Tombeur F, Turner BL, Laliberté E, Lambers H, Mahy G, Faucon MP, Cornelis JT, de Tombeur F, Turner BL, Laliberté E, Lambers H, Mahy G, Faucon M-P, Zemunik G, Cornelis J-T (2020a) Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science 369(6508):1245–1248

    Article  PubMed  Google Scholar 

  • de Tombeur F, Turner BL, Laliberté E, Lambers H, Cornelis JT (2020b) Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a mediterranean climate. Ecosystems 23(8):1614–1630

    Article  Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433(7027):728–731

    Article  CAS  PubMed  Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58(10):2325–2332

    Article  CAS  Google Scholar 

  • Elizondo EB, Carey JC, Al-Haj AN, Lugo AE, Fulweiler RW (2021) High productivity makes mangroves potentially important players in the tropical silicon cycle. Front Mar Sci 8:652615

    Article  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Biol 50:641–664

    Article  CAS  Google Scholar 

  • Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127(1–2):71–79

    Article  CAS  Google Scholar 

  • Fraysse F, Cantais F, Pokrovsky OS, Schott J, Meunier JD (2006) Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon. J Geochem Explor 88(1–3):202–205

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258(3–4):197–206

    Article  CAS  Google Scholar 

  • Frings PJ, Clymans W, Fontorbe G, Christina L, Conley DJ (2016) The continental Si cycle and its impact on the ocean Si isotope budget. Chem Geol 425:12–36

    Article  CAS  Google Scholar 

  • Gao H, Li JB, He T, Sun ZG, Fan AL, Zhu H, Zhai SJ (2017) Silica distribution characteristics in plant-soil systems of typical vegetation communities and ecotones in Min River estuary wetland. J Soil Water Conserv 31(1):279–285

    Google Scholar 

  • Gao H, Zhai SJ, Sun ZG, He T, Tian LP, Hu XY (2018) Spatial and temporal variations of available silica content in marsh soils under the Spartina alterniflora invasion in the Min River estuary. Acta Ecol Sin 38(17):6136–6142

    CAS  Google Scholar 

  • Hackney CT, Cahoon LB, Preziosi C, Norris A (2002) Silicon is the link between tidal marshes and estuarine fisheries: a new paradigm. Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp 543–552

    Chapter  Google Scholar 

  • Haysom MBC, Chapman LS (1975) Some aspects of the calcium silicate trials at Mackay. Proceedings 42:117–122

    CAS  Google Scholar 

  • Hodson MJ, Guppy CN (2022) Some thoughts on silicon and carbon trade-offs in plants. Plant Soil 477:233–239

    Article  CAS  Google Scholar 

  • Hömberg A, Broder T, Schaller J, Knorr KH (2021a) Methane fluxes but not respiratory carbon dioxide fluxes altered under Si amendment during drying–rewetting cycles in fen peat mesocosms. Geoderma 404:115338

    Article  CAS  Google Scholar 

  • Hömberg A, Broder T, Knorr KH, Schaller J (2021b) Divergent effect of silicon on greenhouse gas production from reduced and oxidized peat organic matter. Geoderma 386:114916

    Article  Google Scholar 

  • Hopkinson CS, Wolanski E, Cahoon DR, Perillo GM, Brinson MM (2019) Coastal wetlands: a synthesis. In: Coastal wetlands. Elsevier, Amsterdam, Netherlands, pp 1–75

  • Johnson-Maynard JL, Graham RC, Shouse PJ, Quideau SA (2005) Base cation and silicon biogeochemistry under pine and scrub oak monocultures: implications for weathering rates. Geoderma 126(3–4):353–365

    Article  CAS  Google Scholar 

  • Kaufman PB, Dayanandan P, Takeoka Y, Bigelow WC, Jones JD, Iler R (1981) Silica in shoots of higher plants. Silicon and siliceous structures in biological systems. Springer, New York, NY, pp 409–449

    Chapter  Google Scholar 

  • Klotzbücher T, Klotzbücher A, Kaiser K, Vetterlein D, Jahn R, Mikutta R (2018) Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob Change Biol 24(1):e183–e189

    Article  Google Scholar 

  • Klotzbücher T, Leuther F, Marxen A, Vetterlein D, Horgan FG, Jahn R (2015) Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant Soil 393(1):177–191

    Article  Google Scholar 

  • Langley-Turnbaugh SJ, Bockheim JG (1998) Mass balance of soil evolution on late quaternary marine terraces in coastal Oregon. Geoderma 84(4):265–288

    Article  CAS  Google Scholar 

  • Li Z, Cornelis JT, Vander Linden C, Van Ranst E, Delvaux B (2020) Neoformed aluminosilicate and phytogenic silica are competitive sinks in the silicon soil–plant cycle. Geoderma 368:114308

    Article  CAS  Google Scholar 

  • Li Z, Meunier JD, Delvaux B (2022) Aggregation reduces the release of bioavailable silicon from allophane and phytolith. Geochim Cosmochim Acta 325:87–105

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Li B (2013a) The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Appl Geochem 37:117–124

    Article  Google Scholar 

  • Li Z, Song Z, Jiang P (2013b) Biogeochemical sequestration of carbon within phytoliths of wetland plants: a case study of Xixi wetland, China. Chin Sci Bull 58(20):2480–2487

    Article  CAS  Google Scholar 

  • Li Z, Unzué-Belmonte D, Cornelis JT, Linden CV, Struyf E, Ronsse F, Delvaux B (2019a) Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant Soil 438(1):187–203

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Singh BP, Wang H (2019b) The impact of crop residue biochars on silicon and nutrient cycles in croplands. Sci Total Environ 659:673–680

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Song Z, Yan Z, Hao Q, Song A, Liu L, Liang Y (2018) Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron Sustain Dev 38(3):1–19

    Article  Google Scholar 

  • Liang Y, Nikolic M, B´elanger R, Gong H, Song A (2015) Silicon in Agriculture. From theory to practice. Springer, Dordrecht

    Book  Google Scholar 

  • Liu C, Deng C (2014) The effect of weathering on the grain-size distribution of red soils in south-eastern China and its climatic implications. J Asian Earth Sci 94:94–104

    Article  Google Scholar 

  • Liu LJ, Huang ZT, Meng CF, Jiang PK (2021) Research progress on soil silicon in different ecosystems in China. Acta Pedol Sin 58:31–41

    Google Scholar 

  • Liu J, Song Z, Wang J, Bouwman AF, Li M, Liu S, Ran X, Liu J, Song Z, Wang J, Bouwman AF, Li M, Liu S, Cao L, Zang J, Ran X (2020) Biogenic silica composition and storage in the Yellow River Delta wetland with implications for the carbon preservation. Wetlands 40(5):1085–1095

    Article  Google Scholar 

  • Lu R (2000) Analytical methods of soil agrochemistry. China Agricultural Science and Technology Press, Beijing

  • Lü C, He J, Wang B, Zhou B, Wang W, Fan M (2015) Environmental geochemistry of dissolved and biogenic silicon and its nutrient limitation effects in an inland lake, China. Environ Sci Pollut Res 22(14):11137–11147

    Article  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, …, Bowler C (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci 113(11):E1516-E1525

  • Matichenkov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Studies in plant science, vol 8. Elsevier, Amsterdam, Netherlands, pp 209–219

  • Meunier JD, Cornu S, Keller C, Barboni D (2022) The role of silicon in the supply of terrestrial ecosystem services. Environ Chem Lett 20(3):2109–2121

    Article  CAS  Google Scholar 

  • Meunier JD, Sandhya K, Prakash NB, Borschneck D, Dussouillez P (2018) pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India). Plant Soil 432(1):143–155

    Article  CAS  Google Scholar 

  • Nakamura R, Ishizawa H, Wagai R, Suzuki S, Kitayama K, Kitajima K (2019) Silicon cycled by tropical forest trees: effects of species, elevation and parent material on Mount Kinabalu, Malaysia. Plant Soil 443(1):155–166

    Article  CAS  Google Scholar 

  • Otto A, Shunthirasingham C, Simpson MJ (2005) A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org Geochem 36(3):425–448

    Article  CAS  Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37(1):117–124

    Article  CAS  Google Scholar 

  • Parr JF, Sullivan LA (2011) Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil 342(1):165–171

    Article  CAS  Google Scholar 

  • Penman DE, Rugenstein JKC, Ibarra DE, Winnick MJ (2020) Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci Rev 209:103298

    Article  CAS  Google Scholar 

  • Qin Y, Puppe D, Payne R, Li L, Li J, Zhang Z, Xie S (2020) Land-Use change effects on protozoic silicon pools in the Dajiuhu National Wetland Park, China. Geoderma 368:114305

    Article  CAS  Google Scholar 

  • Rashad RT, Hussien RA (2020) Agronomic efficiency of feldspar, quartz silica, and zeolite as silicon (Si) fertilizers in sandy soil. Commun Soil Sci Plant Anal 51(8):1078–1088

    Article  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):230A – 2221

    Google Scholar 

  • Reithmaier GMS, Knorr KH, Arnhold S, Planer-Friedrich B, Schaller J (2017) Enhanced silicon availability leads to increased methane production, nutrient and toxicant mobility in peatlands. Sci Rep 7(1):1–8

    Article  CAS  Google Scholar 

  • Sanchez PA (2019) Properties and Management of Soils in the Tropics. Cambridge University Press

    Book  Google Scholar 

  • Sartor LR, Graham RC, Ying SC, Andrade GR, Montes CR, Ferreira TO (2019) Are hypersaline tidal flat soils potential silicon sinks in coastal wetlands? Geoderma 337:215–224

    Article  CAS  Google Scholar 

  • Schaller J, Puppe D, Kaczorek D, Ellerbrock R, Sommer M (2021) Silicon cycling in soils revisited. Plants 10(2):295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoelynck J, Struyf E (2016) Silicon in aquatic vegetation. Funct Ecol 30(8):1323–1330

    Article  Google Scholar 

  • Sethi D, Butler TO, Shuhaili F, Vaidyanathan S (2020) Diatoms for carbon sequestration and bio-based manufacturing. Biology 9(8):217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, Chadwick OA (2016) Water balance creates a threshold in soil pH at the global scale. Nature 540(7634):567–569

    Article  CAS  PubMed  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169(3):310–329

    Article  CAS  Google Scholar 

  • Song Z, Liu H, Strömberg CA, Wang H, Strong PJ, Yang X, Wu Y (2018a) Contribution of forests to the carbon sink via biologically-mediated silicate weathering: a case study of China. Sci Total Environ 615:1–8

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Liu C, Müller K, Yang X, Wu Y, Wang H (2018b) Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change. Earth Sci Rev 185:463–475

    Article  CAS  Google Scholar 

  • Song Z, Liu H, Si Y, Yin Y (2012) The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Glob Change Biol 18(12):3647–3653

    Article  Google Scholar 

  • Song Z, Liu H, Strömberg CA, Yang X, Zhang X (2017) Phytolith carbon sequestration in global terrestrial biomes. Sci Total Environ 603:502–509

    Article  PubMed  Google Scholar 

  • Song Z, McGrouther K, Wang H (2016) Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth Sci Rev 158:19–30

    Article  CAS  Google Scholar 

  • Song Z, Wang H, Strong PJ, Shan S (2014) Increase of available soil silicon by Si-rich manure for sustainable rice production. Agron Sustain Dev 34(4):813–819

    Article  Google Scholar 

  • Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Processes Landforms: J Br Geomorphological Res Group 33(9):1436–1457

    Article  CAS  Google Scholar 

  • Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7(2):88–94

    Article  Google Scholar 

  • Struyf E, Mörth CM, Humborg C, Conley DJ (2010) An enormous amorphous silica stock in boreal wetlands. J Geophys Res: Biogeosci 115:5613–5618

    Google Scholar 

  • Sun W, Gan Z, Sun Z, Li L, Sun J, Sun W, …, Wang L (2013) Spatial distribution characteristics of Fe and Mn contents in the new-born coastal marshes in the Yellow River Estuary. Environ Sci 34(11):4411–4419

  • Thakral V, Bhat JA, Kumar N, Myaka B, Sudhakaran S, Patil G, Deshmukh R, Thakral V, Bhat JA, Kumar N, Myaka B, Sudhakaran S, Patil G, Sonah H, Shivaraj SM, Deshmukh R (2021) Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environ Exp Bot 189:104545

    Article  CAS  Google Scholar 

  • Tobias C, Neubauer SC (2019) Chapter 16 - Salt marsh biogeochemistry—an overview. In: Coastal wetlands, 2nd edn. Elsevier, Amsterdam, Netherlands, pp 539–596

  • Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, Pondaven P, Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, Bittner L, Dugdale R, Finkel Z, Iudicone D, Jahn O, Guidi L, Lasbleiz M, Leblanc K, Levy M, Pondaven P (2018) Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci 11(1):27–37

    Article  Google Scholar 

  • Tréguer PJ, Sutton JN, Brzezinski M, Charette MA, Devries T, Dutkiewicz S, Rouxel O, Tréguer PJ, Sutton JN, Brzezinski M, Charette MA, Devries T, Dutkiewicz S, Ehlert C, Hawkings J, Leynaert A, Liu SM, Llopis Monferrer N, López-Acosta M, Maldonado M, Rahman S, Ran L, Rouxel O (2021) Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18(4):1269–1289

    Article  Google Scholar 

  • Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181(9/10):393–411

    Article  CAS  Google Scholar 

  • Turner BF, White AF, Brantley SL (2010) Effects of temperature on silicate weathering: solute fluxes and chemical weathering in a temperate rain forest watershed, Jamieson Creek, British Columbia. Chem Geol 269(1–2):62–78

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Vander Linden C, Delvaux B (2019) The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma 351:209–220

    Article  CAS  Google Scholar 

  • Vander Linden C, Li Z, Iserentant A, Van Ranst E, de Tombeur F, Delvaux B (2021) Rainfall is the major driver of plant Si availability in perudic gibbsitic andosols. Geoderma 404:115295

    Article  CAS  Google Scholar 

  • Wang W, Sardans J, Wang C, Zeng C, Tong C, Chen G, Peñuelas J, Wang W, Sardans J, Wang C, Zeng C, Tong C, Chen G, Huang J, Pan H, Peguero G, Vallicrosa H, Peñuelas J (2019) The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Glob Change Biol 25(2):733–743

    Article  Google Scholar 

  • Wang H, Zhang L, Zhu Q, Huang J, Tong C (2023) Biogenic silica contents in herbaceous plants of coastal tidal marshes in Fujian Province, Zhejiang Province and Shanghai City. Wetland Sci 21(1):140–149

    CAS  Google Scholar 

  • Xia S, Song Z, Li Q, Guo L, Yu C, Singh BP, …, Wang H (2021) Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker. Glob Change Biol 27(2):417–434

  • Xia S, Song Z, Van Zwieten L, Guo L, Yu C, Hartley IP, Wang H (2020) Silicon accumulation controls carbon cycle in wetlands through modifying nutrients stoichiometry and lignin synthesis of Phragmites australis. Environ Exp Bot 175:104058

    Article  CAS  Google Scholar 

  • Xia S, Song Z, Van Zwieten L, Guo L, Yu C, Wang W, Wang H, Xia S, Song Z, Van Zwieten L, Guo L, Yu C, Wang W, Li Q, Hartley IP, Yang Y, Liu H, Wang Y, Ran X, Liu C-Q, Wang H (2022) Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Glob Change Biol 28(20):6065–6085

    Article  CAS  Google Scholar 

  • Yang W, An S, Zhao H, Xu L, Qiao Y, Cheng X (2016) Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol Eng 86:174–182

    Article  Google Scholar 

  • Yang S, Hao Q, Liu H, Zhang X, Yu C, Yang X, Song Z, Yang S, Hao Q, Liu H, Zhang X, Yu C, Yang X, Xia S, Yang W, Li J, Song Z (2019) Impact of grassland degradation on the distribution and bioavailability of soil silicon: implications for the Si cycle in grasslands. Sci Total Environ 657:811–818

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Song Z, Qin Z, Wu L, Yin L, Van Zwieten L, Wang H (2020) Phytolith-rich straw application and groundwater table management over 36 years affect the soil-plant silicon cycle of a paddy field. Plant Soil 454(1):343–358

    Article  CAS  Google Scholar 

  • Yang X, Song Z, Van Zwieten L, Sun X, Yu C, Wang W, Wang H (2021) Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China. Geoderma 401:115215

    Article  CAS  Google Scholar 

  • Yang DF, Yu C, Gao ZH, Zhang J, Wang F (2005) Silicon limitation on primary production and its destiny in Jiaozhou Bay, China. Chin J Oceanol Limnol 23(1):72–90

    Article  CAS  Google Scholar 

  • Yang JL, Zhang GL (2018) Silicon cycling by plant and its effects on soil Si translocation in a typical subtropical area. Geoderma 310:89–98

    Article  CAS  Google Scholar 

  • Yue QU, Tao MA, Yueming HU, Luo LIU, Xiaolin SUN (2021) Spatial distribution and influencing factors of soil available silicon in farmland cultivated layers in Conghua District. J Agric Resour Environ 38(6):989–998

    Google Scholar 

  • Zhai S, Qiu S, Gao H, Hou G (2021) Dynamics and characteristics of biogenic silica and macro-and microelements in decomposing litter in the Min River estuary, southeast China. Elementa: Sci Anthropocene 9(1):084

    Google Scholar 

  • Zhai SJ, Xue LL, Tong C (2013) Advances of silicon cycle in wetland ecosystem. Ecol Environ Sci 22:1744–1748

    Google Scholar 

  • Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, …, Xi H (2021) Global CO2 consumption by silicate rock chemical weathering: its past and future. Earths Future 9(5):e2020EF001938

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34(2):455–472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Natural Science Foundation of Jiangsu Province (Grant Nos. BK20221028), and National Natural Science Foundation of China (Grant Nos. 41930862 and 42141014). Financial support was also provided by the Haihe Laboratory of Sustainable Chemical Transformations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoliang Song.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Responsible Editor: Eric Paterson.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 146 KB)

ESM 2

(DOCX 33.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Song, Z., Fan, Y. et al. Spatial distribution patterns and controls of bioavailable silicon in coastal wetlands of China. Plant Soil 493, 187–205 (2023). https://doi.org/10.1007/s11104-023-06224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06224-y

Keywords

Navigation