Skip to main content

Abstract

In the shoots of vascular plants, silica is deposited as amorphous silica gel, SiO2 · nH2O. It occurs in many plant families including the scouring rushes or horsetails (Equisetaceae), grasses (Poaceae), sedges (Cyperaceae), ginger family (Zingiberaceae), spiderworts (Commelina- ceae), nettles (Urticaceae), elm family (Ulmaceae), vervain family (Ver- benaceae), hemp family (Cannabaceae), and pea family (Fabaceae). A much more comprehensive and complete listing is found in Voronkov et al. (1975). In many of the plants in these families, silica is deposited in hairs (or trichomes). However, it may also occur in stomata, ordinary epidermal cells, and in specialized silica cells in grasses. Silica also occurs in other tissues internal to the epidermis in leaves, stems, roots, and reproductive structures. The groups of plants that accumulate significant amounts of silica in their shoots, which we shall call “silica rich,” include the scouring rushes or horsetails, grasses, and sedges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, A. G. 1969. Effects of combined silicon and gibberellic acid on enzyme behavior and sucrose content of immature sugarcane. Proc. Int. Soc. Sugarcane Technol., 13:522–531.

    CAS  Google Scholar 

  • Blackman, E. 1968. The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Ann. Bot., 32:207–218.

    Google Scholar 

  • Blackman, E., and D. W. Parry. 1968. Opaline silica deposition in rye (Secale cereale L.). Ann. Bot., 32:199–206.

    Google Scholar 

  • Brown, W. V., W. F. Harris and J. D. Graham. 1959a. Grass morphology and sys-tematics. I. The internode. Southwest Nat., 4:115–125.

    Article  Google Scholar 

  • Brown, W. V., G. A. Pratt and H. M. Mobley. 1959b. Grass morphology and sys-tematics. II. The nodal pulvinus. Southwest Nat., 4. 126–130.

    Article  Google Scholar 

  • Chen, C. H., and J. Lewin. 1969. Silicon as a nutrient element for Equisetum ar-vense. Can. J. Bot., 47:125–131.

    Article  CAS  Google Scholar 

  • Coombs, J., and B. E. Volcani. 1968. Silicon-induced metabolic transients in Navicula peliculosa (Bréb.) Hilse. Planta, 80:264–279.

    Article  CAS  Google Scholar 

  • Dayanandan, P. 1977. Stomata in Equisetum: A structural and functional study. Ph.D. dissertation. University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  • Dayanandan, P., F. V. Hebard, V. D. Baldwin and P. B. Kaufman. 1977. Structure of gravity-sensitive sheath and internodal pulvini in grass shoots. Am. J. Bot., 64:1189–1199.

    Article  Google Scholar 

  • Dayanandan, P., F. V. Hebard and P. B. Kaufman. 1976. Cell elongation in the grass pulvinus in response to geotropic stimulation and auxin application. Planta, 131:245–252.

    Article  Google Scholar 

  • Dayanandan, P., and P. B. Kaufman. 1973. Stomata in Equisetum. Can. J. Bot., 51:1555–1564.

    Article  Google Scholar 

  • Drum, R. W., and H. S. Pankrantz. 1964. Post mitotic fine structure of Gomphonema parvulum. J. Ultrastr. Res., 10:217–223.

    Article  CAS  Google Scholar 

  • Engel W. and L. Holzapfel. 1960. Keiselsäurenachweis in Gegenwart von Phosphorsaure und Eiweisskomponenten: Analytischer Nachweis und Trennungsmethoden. Beitr. Silikose-Forsch., 4:67–71.

    CAS  Google Scholar 

  • Geis, J. W. 1973. Biogenic silica in selected species of deciduous angiosperms. Soil Sci., 116:113–119.

    Article  Google Scholar 

  • Geis, J. W. 1978. Biogenic opal in three species of Gramineae. Ann. Bot., 42:1119–1129.

    CAS  Google Scholar 

  • Goering, J. J., D. M. Nelson and J. A. Carter. 1973. Silicic acid uptake by natural population of marine phytoplankton. Deep Sea Res., 20:777–789.

    CAS  Google Scholar 

  • Hansen, D. J., P. Dayanandan, P. B. Kaufman and J. D. Brotherson. 1976. Ecological adaptations of saltmarsh grass, Distichlis spicata (Gramineae), and environmental factors affecting its growth and distribution. Am. J. Bot., 63:635–650.

    Article  Google Scholar 

  • Hayat, M. A. 1978. Introduction to Biological Scanning Electron Microscopy. University Park Press, Baltimore, Maryland, pp. 1–323.

    Google Scholar 

  • Hebard, F. V., S. J. Amatangelo, P. Dayanandan and P. B. Kaufman. 1976. Studies on acidification of media by Avena stem segments in the presence and absence of gibberellic acid. PL Physiol., 58:670–674.

    Article  CAS  Google Scholar 

  • Iler, R. 1979. The Chemistry of Silica. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Jones, J. D., P. B. Kaufman and W. L. Rigot. 1978. Method for determination of silicon in plant materials by neutron activation analysis. J. Radioanalytical Chem., 50:261–275.

    Article  Google Scholar 

  • Jones L. P. H., and K. A. Handreck. 1967. Silica in soils, plants and animals. Adv. Agron., 19:107–149.

    Article  CAS  Google Scholar 

  • Jones, L. P. H., and A. A. Milne. 1963. Studies of silica in the oat plant. I. Chemical and physical properties of the silica. Plant and Soil, 18:207–220.

    Article  CAS  Google Scholar 

  • Jones, L. P. H., A. A. Milne and S. M. Wadham. 1963. Studies of silica in the oat plant. II. Distribution of silica in the plant.Plant and Soil, 18:358–371.

    Article  CAS  Google Scholar 

  • Kaufman, P. B., W. C. Bigelow, L. B. Petering and F. B. Drogosz. 1969a.Silica in developing epidermal cells of Avena internodes: electron microprobe analysis. Science, 166:1015–1017.

    Article  Google Scholar 

  • Kaufman, P. B., L. B. Petering and P. A. Adams. 1969b.Regulation of growth and cellular differentiation in developing Avena internodes by gibberellic acid and indole-3-acetic acid. Am. J. Bot., 56:918–927.

    Article  CAS  Google Scholar 

  • Kaufman, P. B., L. B. Petering and J. G. Smith. 1970. Ultrastructural development of cork-silica cell pairs in Avena internodal epidermis. Bot. Gaz., 131:173–185.

    Article  Google Scholar 

  • Kaufman, P. B., W. C. Bigelow, R. Schmid and N. S. Ghosheh. 1971. Electron probe microanalysis of silica in epidermal cells of Equisetum. Am. J. Bot., 58:309–316.

    Article  CAS  Google Scholar 

  • Kaufman, P. B., J. D. Lacroix, J. J. Rosen, L. F. Allard and W. C. Bigelow. 1972a.Scanning electron microscopy and electron microprobe analysis of silicifi-cation patterns in inflorescence bracts of Avena sativa. J. Bot., 59:1018–1025.

    Article  Google Scholar 

  • Kaufman, P. B., S. L. Soni, J. D. La Croix, J. J. Rosen and W. C. Bigelow. 1972b Electron-probe microanalysis of silicon in the epidermis of rice (Oryza sa-tiva L.) internodes. Planta, 104:10–17.

    Article  CAS  Google Scholar 

  • Kaufman, P. B., J. D. LaCroix, P. Dayanandan, L. F. Allard, J. J. Rosen and W. C. Bigelow. 1973. Silicification of developing internodes in the perennial scouring rush (Equisetum hyemale var. affine). Dev. Biol., 31:124–135.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, P. B., N. S. Ghosheh, L. Nakosteen, R. P. Pharis, R. C. Durley and W. Morf. 1976. Analysis of native gibberellins in the internode, nodes, leaves and inflorescence of developing Avena plants. PL PhysioL, 58:131–134.

    Article  CAS  Google Scholar 

  • Kaufman, P. B., F. Hebard, N. S. Ghosheh, D. Zamler and T. Schmidt. 1978. Gib-berellin and geostimulation enhance the acidification response in oat (Avena) stem segments. PL PhysioL, 61:111.

    Article  Google Scholar 

  • Kaufman, P. B., Y. Takeoka and W. C. Bigelow. 1979. Scanning electron microscopy and X-ray microanalysis of silica in the leaf sheath pulvinus and internodal intercalary meristem of rice. Japanese J. Crop Science, XXXXVIII(1):187–188.

    Google Scholar 

  • Kaufman, P. B., Y. Takeoka, T. J. Carlson, W. C. Bigelow, J. D. Jones and P. H. Moore, 1979a. Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorphology, 29:185–193.

    Google Scholar 

  • Lauger, K., and O. W. Florke. 1974. Near infrared absorption spectra (4,000-9,000 cm-1) of opals and the role of ‘water’ in these SiO2 · nH2O minerals. Fortschr. Miner., 52:17–51.

    Google Scholar 

  • Lanning F. C, B. W. Y. Ponnaiya, and F. C. Crumption. 1958. The chemical nature of silica in plants. PL PhysioL, 33:339–343.

    Article  CAS  Google Scholar 

  • Laroche, J. 1967. Localization de la silice par le microanalyseur à sonde électronique. Comptes Rendus Acad. Sci. (Paris), 265:1695–1697.

    Google Scholar 

  • Laroche, J. 1968. Contribution à l’étude de l’Equisetum arvense L. III. Recherches sur la nature et la localisation de la silice chez le sporophyte. Rev. Gen. Bot., 75:65–116.

    Google Scholar 

  • Laroche, J. 1969. État de la silice sur et dous la membrane épidermique des organes aériens stériles d’Equisetum arvense. L. Rev. Gen. Bot., 76:483–489.

    CAS  Google Scholar 

  • Lau, E., M. Goldoftas, V. C. Baldwin, P. Dayanandan, J. Srinivasan and P. B. Kaufman. 1978. Structure and localization of silica in the leaf and inter nodal epidermal system of the marsh grass Phragmites australis. Can. J. Bot., 56:1696–1701.

    Article  Google Scholar 

  • Lewin, J. C, and B. E. F. Reimann. 1969. Silicon and plant growth. Ann. Rev. PL PhysioL, 20:289–304.

    Article  CAS  Google Scholar 

  • Lovering, T. S., and C. Engel. 1967. Translocation of silica and other elements from rock into Equisetum and three grasses. U.S. Geol. Survey Prof. Papers 594B, B-l to B-13..

    Google Scholar 

  • Parry, D. W., and F. Smithson. 1958. Techniques for studying opaline silica in grass leaves. Ann. Bot., 22:543–549.

    Google Scholar 

  • Pharis, R. P., R. L. Legge, M. Noma, P. B. Kaufman, N. S. Ghosheh, J. D. LaCroix, and K. Heller. 1981. Changes in endogenous gibberellins and the metabolism of [3H]GA4 after geostimulation in shoots of the oat plant (Avena sa-tiva). Plant Physiol. (in press).

    Google Scholar 

  • Sangster, A. G. 1968. Studies of opaline silica deposits in the leaf of Sieglingia decumbens (L.) Bernh. using the scanning electron microscope. Ann. Bot. (London), 32:237–240.

    Google Scholar 

  • Sangster, A. G. 1970a. Intracellular silica deposition in immature leaves in three species of the Gramineae. Ann. Bot., 34:245–257.

    CAS  Google Scholar 

  • Sangster, A. G. 1970b. Intracellular silica deposition in mature and senescent leaves of Sieglingia decumbens (L.) Ann. Bot., 34:557–570.

    CAS  Google Scholar 

  • Sangster, A. G. 1977. Characteristics of silica deposition in Digitaria sanguin-alis (L) Scop. (Crabgrass). Ann. Bot., 41:341–341-350.

    Google Scholar 

  • Soni, S. L., P. B. Kaufman and R. A. Jones. 1972. Electron microprobe analysis of the distribution of silicon and other elements in rice leaf epidermis. Bot. Gaz., 133:66–72.

    Article  CAS  Google Scholar 

  • Srinivasan, J., P. Dayanandan, and P. B. Kaufman. 1979. Silica distribution in Equisetum hyemale var. affine (Engelm) in relation to the negative geotropic response. New Phytol., 83:623–626.

    Article  CAS  Google Scholar 

  • Takahashi, E. 1974. Comparative Plant Nutrition. Yokendo Publishers, Tokyo, Japan.

    Google Scholar 

  • Takahashi, E., and A. Okuda. 1962. The characteristics of silicic acid uptake in paddy rice. J. Sci. Soil Manure, Japan, 33:217–221.

    Google Scholar 

  • Takeoka, Y. 1976. Histogenesis of lemma in Japonica paddy rice. Proc. Crop Sci. Soc. Japan, 45:569–581.

    Article  Google Scholar 

  • Takeoka, Y., P. B. Kaufman and W. C. Bigelow. 1979. Scanning electron microscopy and x-ray micro-analysis of silica in the rice spikelet. Japanese J. Crop Science, XXXXVIII(1):189–190.

    Google Scholar 

  • Timell, T. E. 1964. Studies on some ancient plants. Svenska Papperstidning., 67:356–363.

    CAS  Google Scholar 

  • Voronkov, M. G., G. I. Zelchan and E. Lukevitz. 1975. Silizium und Leben. Akademie-Verlag, Berlin.

    Google Scholar 

  • Weiss, A., and A. Herzog. 1978. Isolation and characterization of a silicon-organic complex from plants. In: G. Bendz and I. Lindqvist (eds.). Biochemistry of Silicon and Related Problems. Plenum Press, New York pp. 109–127.

    Google Scholar 

  • Werner, D. 1970. Bestimmung niederpolymer Kiesäuren aus Cyclotella eryp-tica durch Atomabsorptionsspektroskopie für Silizium. Hoppe-Seyler’s Z. Physiol. Chem., 151:134–135.

    Google Scholar 

  • Werner, D. 1977. Silicate metabolism. In: D. Werner (ed.). The Biology of Diatoms. Botanical Monographs 13, Blackwell Scientific Publications, Oxford, England. Chap. 5, pp. 110–149.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kaufman, P.B., Dayanandan, P., Takeoka, Y., Bigelow, W.C., Jones, J.D., Iler, R. (1981). Silica in Shoots of Higher Plants. In: Simpson, T.L., Volcani, B.E. (eds) Silicon and Siliceous Structures in Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5944-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5944-2_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5946-6

  • Online ISBN: 978-1-4612-5944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics