Skip to main content

Advertisement

Log in

Impacts of domestication on the rhizobial mutualism of five legumes across a gradient of nitrogen-fertilisation

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Domestication and crop breeding has improved plants for human use, but may have unintended consequences for traits that are not selected upon. Disruption in the mycorrhizal mutualism has been observed in crops; possibly due to breeding in fertilised soil. Little is known about whether the legume-rhizobia mutualism can be disrupted by domestication and crop evolution, despite the importance of symbiotic nitrogen fixation. We aimed to identify differences in mutualistic outcomes between five legume cultivars and their wild progenitors in terms of their reactions across varying nitrogen levels.

Methods

With five greenhouse experiments, we characterised symbiosis traits in chickpea, lentil, pea, peanut, and soybean across a gradient of N fertilisation to characterise whether symbiosis traits differ context specifically between wild and domesticated lines.

Results

At lower levels of N addition, wild soybean benefited more from rhizobia than domesticated soybean. Chickpea cultivars abandoned symbiosis at lower N than wild chickpea accessions. Chickpea cultivars reduced per-nodule colony forming units (CFU) in response to N addition more than wild chickpeas, but lentil cultivars reduced CFU less than lentil accessions. The lentil, pea, and peanut cultivars did not differ from their wild relatives in rhizobial benefit, nor in nodulation response to N addition.

Conclusions

Differences in the regulation of the root nodule symbiosis are evident between domesticated and wild chickpea and soybean, but not lentil, pea, or peanut. This indicates that mutualism disruption—a decrease in the magnitude of the mutually symbiotic interaction—is a possible, but not necessary, consequence of domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in this manuscript will be archived with Dryad upon acceptance.

References

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  PubMed  Google Scholar 

  • Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360

    Article  CAS  PubMed  Google Scholar 

  • Abruña F, Vicente-Chandler J, Silva S, Gracia W (2022) Productivity of nine coffee varieties growing under intensive management in full sunlight and partial shade in the coffee region of Puerto Rico. J Agric Univ Puerto Rico 49:244–253

    Article  Google Scholar 

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Article  Google Scholar 

  • Alo F, Furman BJ, Akhunov E, Dvorak J, Gepts P (2011) Leveraging genomic resources of model species for the assessment of diversity and phylogeny in wild and domesticated lentil. J Hered 102:315–329

    Article  CAS  PubMed  Google Scholar 

  • Bennett AE, Daniell TJ, White PJ (2013) Benefits of breeding crops for yield response to soil organisms. In: Molecular microbial ecology of the rhizosphere, vol 1. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 17–27

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Seijo G, Freitas FO, Valls JFM, Leal-Bertioli SCM, Moretzsohn MC (2019) An overview of peanut and its wild relatives

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Bobrecka-Jamro D, Jarecki W, Buczek J (2018) Response of soya bean to different nitrogen fertilization levels. J Elem 23:559–568

    Google Scholar 

  • Botelho DMS, Pozza EA, Alves E, Botelho CE, Pozza AA, Ribeiro Júnior PM, de Souza PE (2011) Efeito do silício na intensidade da cercosporiose e na nutrição mineral de mudas de cafeeiro. Arq Inst Biol 78:23–29

    Article  Google Scholar 

  • Brooks MEJKK, van Benthem K, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9:378–400

    Article  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Campitelli BE, Stinchcombe JR (2013) Natural selection maintains a single-locus leaf shape cline in Ivyleaf morning glory, Ipomoea hederacea. Mol Ecol 22:552–564

    Article  CAS  PubMed  Google Scholar 

  • Carter TE, Boerma HR, Specht JE, Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean. In: Soybeans: Improvement, production, and uses. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 303–416

    Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  • Córdova-Campos O, Adame-Álvarez RM, Acosta-Gallegos JA, Heil M (2012) Domestication affected the basal and induced disease resistance in common bean (Phaseolus vulgaris). Eur J Plant Pathol 134:367–379

    Article  Google Scholar 

  • De Carvalho Moretzsohn M, Hopkins MS, Mitchell SE, Kresovich S, Montenegro Valls JF, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

  • de Oliveira SM, Pierozan Junior C, Lago BC, de Almeida REM, Trivelin PCO, Favarin JL (2019) Grain yield, efficiency and the allocation of foliar N applied to soybean canopies. Sci Agric 76:305–310

  • Denison RF (2015) Evolutionary tradeoffs as opportunities to improve yield potential. Field Crop Res 182:3–8

    Article  Google Scholar 

  • Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21(18)

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in northern Peru. Science (New York, N.Y.) 316:1890–3

    Article  CAS  PubMed  Google Scholar 

  • Drew EA, Ballard RA (2010) Improving N2 fixation from the plant down: Compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance. Plant Soil 327:261–277

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization : A cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. MGG - Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Escuredo PR, Minchin FR, Gogorcena Y, Iturbe-Ormaetxe I, Klucas RV, Becana M (1996) Involvement of activated oxygen in nitrate-induced senescence of pea root nodules. Plant Physiol 110:1187–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster SD, Bravington MV (2013) A Poisson-Gamma model for analysis of ecological non-negative continuous data. Environ Ecol Stat 20:533–552

    Article  Google Scholar 

  • Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8(15):1–27

    Article  Google Scholar 

  • Friel CA, Friesen ML (2019) Legumes modulate allocation to rhizobial nitrogen fixation in response to factorial light and nitrogen manipulation. Front Plant Sci 10:1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujikake H, Yamazaki A, Ohtake N, Sueyoshi K, Matsuhashi S, Ito T, Mizuniwa C, Kume T, Hashimoto S, Ishioka NS et al (2003) Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. J Exp Bot 54:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Stulen I, Posthumus F, Van Keulen H, Kuiper P (2002) Effects of N management on growth, N2 fixation and yield of soybean. Nutr Cycl Agroecosyst 62:163–174

    Article  CAS  Google Scholar 

  • Glyan’ko AK, Vasil’eva GG, Mitanova NB, Ishchenko AA (2009) The influence of mineral nitrogen on legume-rhizobium symbiosis. Biol Bull 36:250–258

    Article  Google Scholar 

  • Goyal RK, Mattoo AK, Schmidt MA (2021) Rhizobial–host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front Microbiol 12:1290

    Article  Google Scholar 

  • Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L et al (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:eaat1743

    Article  PubMed  Google Scholar 

  • Grman E, Kellogg WK (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    Article  PubMed  Google Scholar 

  • Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, Wang Y (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): Implications from microsatellites and nucleotide sequences. Ann Bot 106:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Husted L (1936) Cytological studies on the peanut, Arachis. II. CYTOLOGIA 7:396–423

    Article  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi I-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:2263–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis TN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153

    Article  PubMed  Google Scholar 

  • Kazmierczak T, Nagymihaly M, Lamouche F, Barriére Q, Guefrachi I, Alunni B, Ouadghiri M, Ibijbijen J, Kondorosi É, Mergaert P et al (2017) Specific host-responsive associations between Medicago truncatula accessions and Sinorhizobium strains. Mol Plant Microbe Interact 30:399–409

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denlson RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Ro Soc B: Biol Sci 274:3119–3126

    Article  CAS  Google Scholar 

  • Kim MY, Lee S, Van K, Kim T-H, Jeong S-C, Choi I-Y, Kim D-S, Lee Y-S, Park D, Ma J et al (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci 107:22032–22037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Van K, Kang YJ, Kim KH, Lee S-H (2012) Tracing soybean domestication history: From nucleotide to genome. Breed Sci 61(5):445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono TJY, Fu F, Mohammadi M, Hoffman PJ, Liu C, Stupar RM, Smith KP, Tiffin P, Fay JC, Morrell PL (2016) The role of deleterious substitutions in crop genomes. Mol Biol Evol 33:2307–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosterin OE, Zaytseva OO, Bogdanova VS, Ambrose MJ (2010) New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatius (Bieb.) Schmalh. Genet Resour Crop Evol 57:733–739

    Article  CAS  Google Scholar 

  • Koutroubas SD, Papakosta DK, Gagianas AA (1998) The importance of early dry matter and nitrogen accumulation in soybean yield. Eur J Agron 9:1–10

    Article  Google Scholar 

  • La T, Large E, Taliercio E, Song Q, Gillman JD, Xu D, Nguyen HT, Shannon G, Scaboo A (2019) Characterization of select wild soybean accessions in the USDA germplasm collection for seed composition and agronomic traits. Crop Sci 59:233–251

    Article  CAS  Google Scholar 

  • Lammerts van Bueren ET, Struik PC, van Eekeren N, Nuijten E (2018) Towards resilience through systems-based plant breeding A review. Agron Sustain Dev 38(5):1–21

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lebrón L, Lodge DJ, Bayman P (2012) Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico. ISRN Agron 2012:1–7

    Article  Google Scholar 

  • Lecomte J-B, Benoît HP, Ancelet S, Etienne M-P, Bel L, Parent E (2013) Compound Poisson-gamma vs. delta-gamma to handle zero-inflated continuous data under a variable sampling volume (RB O’Hara, Ed.). Methods Ecol Evol 4:1159–1166

    Article  Google Scholar 

  • Lewis F, Butler A, Gilbert L (2011) A unified approach to model selection using the likelihood ratio test. Methods Ecol Evol 2:155–162

    Article  Google Scholar 

  • Liber M, Duarte I, Maia AT, Oliveira HR (2021) The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by genotyping-by-sequencing of wild and landrace accessions. Front Plant Sci 12:355

    Article  Google Scholar 

  • Liu J, Yu X, Qin Q, Dinkins RD, Zhu H (2020) The impacts of domestication and breeding on nitrogen fixation symbiosis in legumes. Front Genet 11:973

    Article  CAS  Google Scholar 

  • Liu X, Ju X, Zhang Y, He C, Kopsch J, Fusuo Z (2006) Nitrogen deposition in agroecosystems in the Beijing area. Agr Ecosyst Environ 113:370–377

    Article  CAS  Google Scholar 

  • Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I (2006) The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22:126–131

    Article  CAS  PubMed  Google Scholar 

  • Makino T, Rubin CJ, Carneiro M, Axelsson E, Andersson L, Webster MT (2018) Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol Evol 10:276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandic V, Simic A, Krnjaja V, Bijelic Z, Tomic Z, Stanojkovic A, Ruzic-Muslic D (2015) Effect of foliar fertilization on soybean grain yield. Biotechnol Anim Husb 31(1):133–143

    Article  Google Scholar 

  • Marques E, Krieg CP, Dacosta-Calheiros E, Bueno E, Sessa E, Penmetsa RV, von Wettberg E (2020) The impact of domestication on aboveground and belowground trait responses to nitrogen fertilization in wild and cultivated genotypes of chickpea (Cicer sp.). Front Genet 11:1506

    Article  Google Scholar 

  • Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R (2018) Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218:322–334

    Article  PubMed  Google Scholar 

  • McGoey BV, Stinchcombe JR (2009) Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis. New Phytol 183:880–891

    Article  PubMed  Google Scholar 

  • Milla R, Matesanz S (2017) Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biol 19:475–483

    Article  CAS  PubMed  Google Scholar 

  • Moyers BT, Morrell PL, McKay JK (2018) Genetic costs of domestication and improvement. J Hered 109:103–116

    Article  PubMed  Google Scholar 

  • Muñoz N, Qi X, Li M-W, Xie M, Gao Y, Cheung M-Y, Wong F-L, Lam H-M (2016) Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 117:84–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndungu SM, Messmer MM, Ziegler D, Gamper HA, Mészáros É, Thuita M, Vanlauwe B, Frossard E, Thonar C (2018) Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agric Ecosyst Environ 261:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishida H, Suzaki T (2018a) Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol 44:129–136

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Suzaki T (2018b) Two negative regulatory systems of root nodule symbiosis: How are symbiotic benefits and costs balanced? Plant Cell Physiol 59:1733–1738

    Article  PubMed  Google Scholar 

  • Nishida H, Nosaki S, Suzuki T, Ito M, Miyakawa T, Nomoto M, Tada Y, Miura K, Tanokura M, Kawaguchi M et al (2021) Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation. Plant Cell 33:2340–2359

    Article  PubMed  PubMed Central  Google Scholar 

  • Oono R, Muller KE, Ho R, Jimenez Salinas A, Denison RF (2020) How do less-expensive nitrogen alternatives affect legume sanctions on rhizobia? Ecol Evol 10:10645–10656

    Article  PubMed  PubMed Central  Google Scholar 

  • Pampana S, Masoni A, Mariotti M, Ercoli L, Arduini I (2018) Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Exp Agric 54:66–82

    Article  Google Scholar 

  • Pannecoucque J, Goormachtigh S, Ceusters N, Bode S, Boeckx P, Roldan-Ruiz I (2022) Soybean response and profitability upon inoculation and nitrogen fertilisation in Belgium. Eur J Agron 132:126390

    Article  CAS  Google Scholar 

  • Parvin S, Van Geel M, Ali MM, Yeasmin T, Lievens B, Honnay O (2021) A comparison of the arbuscular mycorrhizal fungal communities among Bangladeshi modern high yielding and traditional rice varieties. Plant Soil 462:109–124

    Article  CAS  Google Scholar 

  • Porter SS, Sachs JL (2020) Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol Evol 35:426–439

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Ramoneda J, Le Roux J, Stadelmann S, Frossard E, Frey B, Gamper HA (2021) Soil microbial community coalescence and fertilization interact to drive the functioning of the legume–rhizobium symbiosis. J Appl Ecol 58(11):2590–2602

    Article  CAS  Google Scholar 

  • Regus JU, Wendlandt CE, Bantay RM, Gleason NJ, Hollowell AC, Shahin KK, Sachs JL (2017) Nitrogen deposition decreases the benefits of symbiosis in a native legume. Plant Soil 414(1/2):159–170

    Article  CAS  Google Scholar 

  • Renaut S, Rieseberg LH (2015) The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol Biol Evol 32:2273–2283

    Article  CAS  PubMed  Google Scholar 

  • Rigg JL, Webster AT, Harvey DM, Orgill SE, Galea F, Dando AG, Collins DP, Harris CA, Newell MT, Badgery WB et al (2021) Cross-host compatibility of commercial rhizobial strains for new and existing pasture legume cultivars in south-eastern Australia. Crop Pasture Sci 72:652–665

    Article  CAS  Google Scholar 

  • Rose TJ, Julia CC, Shepherd M, Rose MT, Van Zwieten L (2016) Faba bean is less susceptible to fertiliser N impacts on biological N2 fixation than chickpea in monoculture and intercropping systems. Biol Fertil Soils 52:271–276

    Article  CAS  Google Scholar 

  • Ryan MH, Kidd DR, Sandral GA, Yang Z, Lambers H, Culvenor RA, Stefanski A, Nichols PGH, Haling RE, Simpson RJ (2016) High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). Appl Soil Ecol 98:221–232

    Article  Google Scholar 

  • Samago TY, Anniye EW, Dakora FD (2018) Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia. Symbiosis 75:245–255

    Article  PubMed  Google Scholar 

  • Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U (2010) Characterizing variation in mycorrhiza effect among diverse plant varieties. Theor Appl Genet 120:1029–1039

    Article  PubMed  Google Scholar 

  • Sawers RJH, Ramírez-Flores MR, Olalde-Portugal V, Paszkowski U (2018) The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics. New Phytol 220:1135–1140

    Article  PubMed  Google Scholar 

  • Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Fernández F, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae) 1; Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae) 1

  • Sessitsch A, Mitter B (2015) 21st century agriculture: Integration of plant microbiomes for improved crop production and food security. Microb Biotechnol 8:32–33

    Article  PubMed  Google Scholar 

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–314

    Article  CAS  PubMed  Google Scholar 

  • Singleton PW, AbdelMagid HM, Tavares JW (1985) Effect of phosphorus on the effectiveness of strains of Rhizobium japonicum. Soil Sci Soc Am J 49:613–616

    Article  CAS  Google Scholar 

  • Siol M, Jacquin F, Chabert-Martinello M, Smýkal P, Le Paslier M-C, Aubert G, Burstin J (2017) Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm

  • Skovbjerg CK, Knudsen JN, Füchtbauer W, Stougaard J, Stoddard FL, Janss L, Andersen SU (2020) Evaluation of yield, yield stability, and yield–protein relationship in 17 commercial faba bean cultivars. Legume Science 2:e39

    Article  CAS  Google Scholar 

  • Smith BD (2016) Neo-Darwinism, niche construction theory, and the initial domestication of plants and animals. Evol Ecol 30:307–324

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Smýkal P, Coyne C, Redden R, Maxted N (2013) Peas. In: Singh M, Upadhyaya HD, Singh Bish ISB (eds) Genetic and genomic resources of grain legume improvement. Elsevier, pp 41–80

    Chapter  Google Scholar 

  • Smýkal P, Hradilová I, Trněný O, Brus J, Rathore A, Bariotakis M, Das RR, Bhattacharyya D, Richards C, Coyne CJ et al (2017) Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci Rep 7:17384

    Article  PubMed  PubMed Central  Google Scholar 

  • Smýkal P, Nelson M, Berger J, von Wettberg E (2018) The impact of genetic changes during crop domestication. Agronomy 8:119

    Article  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Springer, New York

    Book  Google Scholar 

  • Sonnante G, Hammer K, Pignone D (2009) From the cradle of agriculture a handful of lentils: History of domestication. Rendiconti Lincei 20:21–37

    Article  Google Scholar 

  • Sprent JI, Ardley JK, James EK (2013) From North to South: A latitudinal look at legume nodulation processes. S Afr J Bot 89:31–41

    Article  Google Scholar 

  • Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 215:40–56

    Article  CAS  PubMed  Google Scholar 

  • Stalker HT (2017) Utilizing wild species for peanut improvement. Crop Sci 57:1102–1120

    Article  Google Scholar 

  • Sudupak MA, Akkaya MS, Kence A (2002) Analysis of genetic relationships among perennial and annual Cicer species growing in Turkey using RAPD markers. Theor Appl Genet 105:1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Tanno K, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium b.p. Veg Hist Archaeobotany 15:197–204

    Article  Google Scholar 

  • Terpolilli JJ, O’Hara GW, Tiwari RP, Dilworth MJ, Howieson JG (2008) The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytol 179:62–66

    Article  PubMed  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-Fixing rhizobium-legume symbioses? Adv Microb Physiol 60:325–389

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  PubMed  Google Scholar 

  • Turrini A, Giordani T, Avio L, Natali L, Giovannetti M, Cavallini A (2016) Large variation in mycorrhizal colonization among wild accessions, cultivars, and inbreds of sunflower (Helianthus annuus L.). Euphytica 207:331–342

    Article  Google Scholar 

  • USDA Agricultural Research Service (n.d.) NRRL medium no. 46 modified arabinose gluconate agar. https://webcache.googleusercontent.com/search?q=cache:OiydKkZO9vwJ:https://nrrl.ncaur.usda.gov/cgi-bin/usda/medium/46/nrrl_medium_46.pdf&cd=9&hl=en&ct=clnk&gl=us

  • Valluru R, Gazave EE, Fernandes SB, Ferguson JN, Lozano R, Hirannaiah P, Zuo T, Brown PJ, Leakey ADB, Gore MA et al (2019) Deleterious mutation burden and its association with complex traits in sorghum (Sorghum bicolor). Genetics 211:1075–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Maesen LJG, Maxted N, Javadi F, Coles S, Davies AMR (2009) Taxonomy of the genus Cicer revisited. In: Chickpea breeding and management, pp 14–46

    Google Scholar 

  • Venado RE, Liang J, Marín M (2020) Rhizobia infection, a journey to the inside of plant cells. Adv Bot Res 94:97–118

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Weese DJ, Heath KD, Dentinger BTM, Lau JA (2015) Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69:631–642

    Article  CAS  PubMed  Google Scholar 

  • Wendlandt CE, Regus JU, Gano-Cohen KA, Hollowell AC, Quides KW, Lyu JY, Adinata ES, Sachs JL (2019) Host investment into symbiosis varies among genotypes of the legume Acmispon strigosus, but host sanctions are uniform. New Phytol 221:446–458

    Article  CAS  PubMed  Google Scholar 

  • Westhoek A, Clark LJ, Culbert M, Dalchau N, Griffiths M, Jorrin B, Karunakaran R, Ledermann R, Tkacz A, Webb I et al (2021) Conditional sanctioning in a legume-rhizobium mutualism. Proc Natl Acad Sci USA 118(19)

  • Xing X, Koch AM, Jones AMP, Ragone D, Murch S, Hart MM (2012) Mutualism breakdown in breadfruit domestication. Proc R Soc B: Biol Sci 279:1122–1130

    Article  Google Scholar 

  • Zeder MA (2017) Domestication as a model system for the extended evolutionary synthesis. Interface Focus 7(5)

  • Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222:543–555

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142

    Article  Google Scholar 

  • Zohary D, Hopf M (1973) Domestication of pulses in the old world. Science 183(4115):887–894

    Article  Google Scholar 

Download references

Acknowledgements

We thank those who provided germplasm: soybean cultivar MN1312CN (Aaron Lorenz, Department of Agronomy and Plant Genetics, University of Minnesota), peanut cultivars GA06G and Jupiter (Ricky Hartley, Golden Peanut Company and Jill Manahan, Oklahoma Foundation State Seed Stocks, respectively), pea cultivar Serge and lentil cultivar Pardina (Lyndon Porter, USDA), chickpea cultivar Sawyer and the lentil cultivar Avondale (Clarice Coyne, USDA), chickpea cultivar Sierra (Tiffany Fields, USDA), and wild peanut seeds (Shyamalrau Tallury, USDA). All other wild seeds were provided by GRIN’s U.S. National Plant Germplasm System (see Table 2). All rhizobia were provided by Patrick Elia, USDA Germplasm Resource Collection.

Funding

This research was funded by the National Science Foundation (DEB- 1943239 to SSP) as well as by Washington State University, Vancouver in the form of a Mini-Grant to SSP and a Natural Sciences Graduate Fellowship to NM.

Author information

Authors and Affiliations

Authors

Contributions

Niall Millar (NM) conducted the experiment and wrote the manuscript. Jonah Piovia-Scott assisted with the data analysis. Stephanie Porter (SSP) supervised the practical work and edited the manuscript.

Corresponding author

Correspondence to Stephanie S. Porter.

Ethics declarations

Conflict of interest statement

The authors have no conflicts of interest to declare.

Additional information

Responsible Editor: Katharina Pawlowski.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 KB)

11104_2023_6128_MOESM2_ESM.docx

Supplementary file2 (DOCX 104 KB) Fig. S1 Individual plant lines of domesticated field pea (Pisum sativum) and wild Pisum sativum subsp. elatius differ in their nodule/shoot mass response to N fertiliser addition. Means and standard errors of nodule/shoot mass of domesticated and wild Pisum across levels of N fertilisation. Cultivars shown in grey, wild accessions shown in black. Fig. S2 Individual plant lines of domesticated chickpea (Cicer arietinum) and wild Cicer reticulatum differ in their number of viable rhizobia per nodule in response to N fertiliser addition. Means and standard errors of colony forming units (CFU) of domesticated and wild Cicer across levels of N fertilisation. CFU per nodule is a measure of rhizobial symbiont abundance (i.e., viable bacterial cells) per nodule. Cultivars shown in grey, wild accessions shown in black.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millar, N., Piovia-Scott, J. & Porter, S.S. Impacts of domestication on the rhizobial mutualism of five legumes across a gradient of nitrogen-fertilisation. Plant Soil 491, 479–499 (2023). https://doi.org/10.1007/s11104-023-06128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06128-x

Keywords

Navigation