Skip to main content
Log in

Short-term elevated O3 exerts stronger effects on soil nitrification than does CO2, but jointly promotes soil denitrification

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Atmospheric CO2 and O3 concentrations have been increasing, with important consequences on the biogeochemical cycle in agroecosystems. However, little is known about the interactive effect of elevated CO2 and O3 on soil nitrogen cycling processes mediated by soil microbes.

Methods

We conducted open-top chamber facilities to assess the impacts of short-term elevated CO2 and O3 on soil nitrification and denitrification rates, and the abundances of soil N cycling-related genes for two rice cultivars (Nanjing 5055 vs. Wuyujing 3) in paddy soil.

Results

Elevated CO2 potentially increased the abundance of nitrification-related genes (AOA amoA + 40.9%, AOB amoA + 23.4%, nxrB + 8.6%). Elevated O3 potentially reduced the abundances of AOA and AOB amoA, nxrA, and nxrB by 3.1–23.8%. Combined treatment showed detrimental effects on the abundances of AOA and AOB amoA, and nxrA by 17.6–36.0%, indicating that short-term elevated O3 exerted stronger effects on soil nitrification than CO2. Similarly, both individual and combined treatments decreased the abundance of comammox amoA. Additionally, the individual and combined treatments stimulated the abundance of denitrification-related genes by 4.2–11.9%, except narG. Accordingly, the denitrification rates were significantly increased by 77.2–89.1% under all treatments, particularly for Nanjing 5055. Furthermore, the abundance of nifH mediating N fixation was reduced by elevated CO2 and combined treatments.

Conclusions

Elevated CO2 and O3 may promote soil N losses by increasing the abundances of denitrification-related genes, restraining N fixation-related genes, and potentially threatening food production, highlighting the detrimental impacts of ongoing elevated CO2 and O3 on soil N retention capacity in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897. https://doi.org/10.1111/tpj.13298

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Brown JR, Blankinship JC, Niboyet A, van Groenigen KJ, Dijkstra P, Le Roux X, Leadley PW, Hungate BA (2012) Effects of multiple global change treatments on soil N2O fluxes. Biogeochemistry 109:85–100

    Article  CAS  Google Scholar 

  • Chen W, Zhang L, Li X, Ye R, Li Q, Zhu J, Fang N, Wang L, Wu Z, Horwath WR (2015) Elevated ozone increases nitrifying and denitrifying enzyme activities in the rhizosphere of wheat after 5 years of fumigation. Plant Soil 392:279–288. https://doi.org/10.1007/s11104-015-2457-x

    Article  CAS  Google Scholar 

  • Chen W, Hou H, Sun C, Wu Z, Zhang L, Yu W (2018) The effect of elevated ozone concentration on enzymes increases NO3− content in the soil at the jointing stage of wheat field. Eur J Soil Biol 89:14–19. https://doi.org/10.1016/j.ejsobi.2018.07.005

    Article  CAS  Google Scholar 

  • Chen Z, Maltz MR, Cao J, Yu H, Shang H, Aronson E (2019) Elevated O3 alters soil bacterial and fungal communities and the dynamics of carbon and nitrogen. Sci Total Environ 677:272–280. https://doi.org/10.1016/j.scitotenv.2019.04.310

    Article  CAS  PubMed  Google Scholar 

  • Decock C, Six J (2011) Effects of elevated CO2 and O3 on N-cycling and N2O emissions: a short-term laboratory assessment. Plant Soil 351:277–292. https://doi.org/10.1007/s11104-011-0961-1

    Article  CAS  Google Scholar 

  • Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HT, van Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19:621–636. https://doi.org/10.1111/gcb.12045

    Article  PubMed  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374. https://doi.org/10.1111/j.1462-2920.2007.01358.x

    Article  CAS  PubMed  Google Scholar 

  • He Z, Xiong J, Kent AD, Deng Y, Xue K, Wang G, Wu L, Van Nostrand JD, Zhou J (2014) Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME J 8:714–726

    Article  CAS  PubMed  Google Scholar 

  • He Z, Deng Y, Xu M, Li J, Liang J, Xiong J, Yu H, Wu B, Wu L, Xue K, Shi S, Carrillo Y, Van Nostrand JD, Hobbie SE, Reich PB, Schadt CW, Kent AD, Pendall E, Wallenstein M et al (2020) Microbial functional genes commonly respond to elevated carbon dioxide. Environ Int 144:106068. https://doi.org/10.1016/j.envint.2020.106068

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Yuan Z, Zhang H, Zhang W, Wang X, Jones SB, Wang N (2018) Impact of elevated tropospheric ozone on soil C, N and microbial dynamics of winter wheat. Agri Ecosyst Environ 253:166–176. https://doi.org/10.1016/j.agee.2017.11.010

    Article  CAS  Google Scholar 

  • IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds). Cambridge University Press. In Press

  • Jiao S, Yang Y, Xu Y, Zhang J, Lu Y (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14:202–216. https://doi.org/10.1038/s41396-019-0522-9

    Article  PubMed  Google Scholar 

  • Kanerva T, Palojärvi A, Rämö K, Ojanperä K, Esala M, Manninen S (2006) A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem. Plant Soil 286:61–73

    Article  CAS  Google Scholar 

  • Ladha J, Dawe D, Pathak H, Padre A, Yadav R, Singh B, Singh Y, Singh Y, Singh P, Kundu A (2003) How extensive are yield declines in long-term rice–wheat experiments in Asia? Field Crops Res 81:159–180

    Article  Google Scholar 

  • Li X, Deng Y, Li Q, Lu C, Wang J, Zhang H, Zhu J, Zhou J, He Z (2013) Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone. ISME J 7:660–671. https://doi.org/10.1038/ismej.2012.120

    Article  CAS  PubMed  Google Scholar 

  • Li K, Hayes F, Chadwick DR, Wang J, Zou J, Jones DL (2022) Changes in microbial community composition drive the response of ecosystem multifunctionality to elevated ozone. Environ Res 214:114142. https://doi.org/10.1016/j.envres.2022.114142

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou H, Wang J, Liu X, Cheng K, Li L, Zheng J, Zhang X, Zheng J, Pan G (2015) Short-term response of nitrifier communities and potential nitrification activity to elevated CO2 and temperature interaction in a Chinese paddy field. Appl Soil Ecol 96:88–98. https://doi.org/10.1016/j.apsoil.2015.06.006

    Article  Google Scholar 

  • Philippot L, Spor A, Henault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron PA (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619. https://doi.org/10.1038/ismej.2013.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Jiang Y, Guo L, Burkey KO, Zobel RW, Shew HD, Hu S (2018) Contrasting warming and ozone effects on Denitrifiers dominate soil N2O emissions. Environ Sci Technol 52:10956–10966. https://doi.org/10.1021/acs.est.8b01093

    Article  CAS  PubMed  Google Scholar 

  • Seneca J, Pjevac P, Canarini A, Herbold CW, Zioutis C, Dietrich M, Simon E, Prommer J, Bahn M, Potsch EM, Wagner M, Wanek W, Richter A (2020) Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. ISME J 14:3038–3053. https://doi.org/10.1038/s41396-020-00735-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen LD, Yang YL, Liu JQ, Hu ZH, Liu X, Tian MH, Yang WT, Jin JH, Wang HY, Wang YY, Wu HS (2021) Different responses of ammonia-oxidizing archaea and bacteria in paddy soils to elevated CO2 concentration. Environ Pollut 286:117558

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Hu H-W, Kelly K, Chen D, He J-Z, Suter H (2017) Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils. J Soils Sediments 17:974–984

    Article  CAS  Google Scholar 

  • Shi X, Hu H-W, Wang J, He J-Z, Zheng C, Wan X, Huang Z (2018) Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol Biochem 126:114–122

    Article  CAS  Google Scholar 

  • Shi X, Wang J, Müller C, Hu H-W, He J-Z, Wang J, Huang Z (2020) Dissimilatory nitrate reduction to ammonium dominates soil nitrate retention capacity in subtropical forests. Biol Fert Soils 56:785–797. https://doi.org/10.1007/s00374-020-01457-w

    Article  CAS  Google Scholar 

  • Van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Hasegawa T, Li L, Lam SK, Zhang X, Liu X, Pan G (2019) Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China. New Phytol 222:726–734. https://doi.org/10.1111/nph.15661

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shi X, Tan Y, Wang L, Zhang G (2022a) Elevated O3 exerts stronger effects than elevated CO2 on the functional guilds of Fungi, but collectively increase the structural complexity of Fungi in a Paddy soil. Microb Ecol. https://doi.org/10.1007/s00248-022-02124-3

  • Wang J, Tan Y, Shao Y, Shi X, Zhang G (2022b) Changes in the abundance and community complexity of soil nematodes in two Rice cultivars under elevated ozone. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.916875

  • Wang J, Tan Y, Shi X, Leng P, Zhang G (2023) Simplifying network complexity of soil bacterial community exposed to short-term carbon dioxide and ozone enrichment in a paddy soil. J Environ Manag 326:116656. https://doi.org/10.1016/j.jenvman.2022.116656

    Article  CAS  Google Scholar 

  • Waqas MA, Ye L, Ashraf MN, Ahmed W, Wang B, Sardar MF, Ma P, Li R, Wan Y, Kuzyakov Y (2021) Long-term warming and elevated CO2 increase ammonia-oxidizing microbial communities and accelerate nitrification in paddy soil. Appl Soil Ecol 166. https://doi.org/10.1016/j.apsoil.2021.104063

  • WMO (2019) Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018 (World Meteorological Organization)

  • Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu H, Li Q, Lu C, Zhang L, Zhu J, Dijkstra FA, Yu Q (2016) Elevated ozone effects on soil nitrogen cycling differ among wheat cultivars. Appl Soil Ecol 108:187–194

    Article  Google Scholar 

  • Xia L, Lam SK, Kiese R, Chen D, Luo Y, van Groenigen KJ, Ainsworth EA, Chen J, Liu S, Ma L, Zhu Y, Butterbach-Bahl K (2021) Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4:1752–1763

    Article  Google Scholar 

  • Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, Van Nostrand JD, Zhou J (2015) Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep-UK 5:9316

    Article  Google Scholar 

  • Yang S, Zheng Q, Yuan M, Shi Z, Chiariello NR, Docherty KM, Dong S, Field CB, Gu Y, Gutknecht J, Hungate BA, Le Roux X, Ma X, Niboyet A, Yuan T, Zhou J, Yang Y (2019) Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Sci Total Environ 652:1474–1481

    Article  PubMed  Google Scholar 

  • Yu H, Deng Y, He Z, Pendall E, Carrillo Y, Wang S, Jin D, Wu L, Wang A, Xu Y (2021) Stimulation of soil microbial functioning by elevated CO2 may surpass effects mediated by irrigation in a semiarid grassland. Geoderma 401:115162

    Article  CAS  Google Scholar 

  • Zheng M, Zhou Z, Zhao P, Luo Y, Ye Q, Zhang K, Song L, Mo J (2020) Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob Chang Biol 26(11):6203–6217

    Article  PubMed  Google Scholar 

  • Zhu ZL, Chen D (2002) Nitrogen fertilizer use in China–contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosyst 63(2):117–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.Z. is financially supported by the National Natural Science Foundation of China (No. 42077209). J.W. is financially supported by the National Natural Science Foundation of China (No. 32271679, 31901165) and the Natural Science Foundation of Fujian Province (No. 2020 J01186). X.S. is financially supported by the National Natural Science Foundation of China (No. 32071631, 41907022) and the Natural Science Foundation of Fujian Province (No. 2020 J01138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuzhen Shi or Guoyou Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Yolima Carrillo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Tan, Y. et al. Short-term elevated O3 exerts stronger effects on soil nitrification than does CO2, but jointly promotes soil denitrification. Plant Soil 486, 551–560 (2023). https://doi.org/10.1007/s11104-023-05889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05889-9

Keywords

Navigation