Skip to main content

Advertisement

Log in

An explicit story of plant abiotic stress resilience: Overtone of selenium, plant hormones and other signaling molecules

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Climate change has escalated global environmental risks, particularly the effects of abiotic stresses on agricultural productivity. Improving crop plants’ acclimation to abiotic stress environments is critical to cope with increasing incidences of abiotic stresses, which could potentially be attained by modifying adaptive physiological and molecular processes.

Scope

The agricultural sector is coherently linked with nutrient input, and thus the judicious application of mineral elements as “stress combaters” could be expected to show ameliorative responses under such circumstances. Selenium (Se) has gained substantial recognition as a ‘plant beneficial element’ governing stress adaptive responses by modulating metabolic and signaling pathways associated with plant growth and developmental processes. Se-mediated abiotic stress-responsive and mechanistic behavior have achieved significant progression, however, still there are numerous unexplored facets needed to explore, which will add-on the current elucidative knowledge on the underlying phenomena. Although the individual roles of Se, plant hormones, and other signaling molecules have been comprehensively delineated, their intricate interplay with each other to govern plant responses to multiple abiotic stresses is still unnoticeable.

Conclusions

The current review sheds light on the implicational approaches and underlying mechanisms of Se-induced plant developmental responses and tolerance to abiotic stresses, and its crosstalk with plant hormones and other signaling molecules in regulating the tolerance process. In the near future, it will be intriguing to explore further the diverse roles of Se with plant hormone signaling in the conflict between plants and environmental exposures. To understand this, the characterization and identification of key genes would be effective in exploring the intrinsic signaling mechanism of Se-PGR interaction to provide new insights into the complex signaling pathways to regulate stress resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas SM (2012) Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. J Stress Physiol Biochem 8(1):268–286

    Google Scholar 

  • Abdel-Aziz MA, Geeth RHM (2017) Effect of spraying by some substances on low temperature stress for growth and productivity in late peas (Pisum sativum L.) planting under the middle Egypt region conditions. J Plant Prod 8(8):859–867

    CAS  Google Scholar 

  • Abul-Soud MA, Abd-Elrahman SH (2016) Foliar selenium application to improve the tolerance of eggplant grown under salt stress conditions. Int J Plant Soil Sci 9(1):1

    Article  Google Scholar 

  • Ahmad P, Abd Allah EF, Hashem A, Sarwat M, Gucel S (2016) Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up regulating antioxidative system and secondary metabolites. J Plant Growth Reg 35(4):936–50

    Article  CAS  Google Scholar 

  • Akbulut GB, Yigit E, Kaya A, Aktas A (2018) Effects of salicylic acid and organic selenium on wheat (Triticum aestivum L.) exposed to fenoxaprop-p-ethyl. Ecotox Environ Saf 148:901–909

    Article  CAS  Google Scholar 

  • Akladious SA (2012) Influence of different soaking times with selenium on growth, metabolic activities of wheat seedlings under low temperature stress. Afr J Biotech 11(82):14792–14804

    CAS  Google Scholar 

  • Alatawi A, Wang X, Saleem MH, Mohsin M, Rehman M, Usman K, Fahad S, Mfarrej MFB, Hefft DI, Ali S (2022) Individual and synergic effects of phosphorus and gibberellic acid on organic acids exudation pattern, ultra-structure of chloroplast and stress response gene expression in cu-stressed jute (Corchorus Capsularis L.). J Plant Growth Regul 1–26. https://doi.org/10.1007/s00344-022-10622-4

  • Ali F, Qanmber G, Li F, Wang Z (2022) Updated role of ABA in seed maturation, dormancy, and germination. J Advan Res 35:199–214

    Article  CAS  Google Scholar 

  • Alrashidi AA (2022) Alleviation of salinity triggered oxidative damage and photoinhibition in Vigna radiata by individual and combined treatments of selenium and jasmonic acid. Not Bot Horti Agrobo Cluj-Napoca 50(2):12704

    Article  CAS  Google Scholar 

  • Alves LR, Dos Reis AR, Prado ER, Lavres J, Pompeu GB, Azevedo RA, Gratão PL (2019) New insights into cadmium stressful-conditions: Role of ethylene on selenium-mediated antioxidant enzymes. Ecotox Environ 186:109747

    Article  CAS  Google Scholar 

  • Ardebili NO, Saadatmand S, Niknam V, Khavari-Nejad RA (2014) The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol Plant 36(12):3199–3205

    Article  CAS  Google Scholar 

  • Azizi I, Esmaielpour B, Fatemi H (2020) Effect of foliar application of selenium on morphological and physiological indices of savory (Satureja hortensis) under cadmium stress. Food Sci Nutr 8(12):6539–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagale P, Pandey S, Regmi P, Bhusal S (2022) Role of plant growth regulator “gibberellins” in vegetable production: An overview. Int J Hort Sci 9(3):291–299

    CAS  Google Scholar 

  • Balakhnina TI, Nadezhkina ES (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 64(2):215–223

    Article  CAS  Google Scholar 

  • Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38(6):1–14

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Role of selenium in plants against abiotic stresses: phenological and molecular aspects. Mol Plant Abiotic Stress Biol Biotechnol 12:123–133

    Article  Google Scholar 

  • Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J Environ Sci Health C 30:225–252

    Article  CAS  Google Scholar 

  • Boyd R (2011) Selenium stories. Nat Chem 3(7):570

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Wang W, Akhtar SS, Yang F, Kong F, Cui Z, Jiang X, Zhang E, Li G (2022) Exogenous foliar spray of selenium (Se) alleviates cold stress by promoting photosynthesis and antioxidant defense in waxy maize. Plant Growth Regul. https://doi.org/10.21203/rs.3.rs-1719103/v1

    Article  Google Scholar 

  • Castillo-Godina RG, Foroughbakhch-Pournavab R, Benavides-Mendoza A (2016) Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. J Agri Sci Technol 18(1):233–244

    Google Scholar 

  • Çatav ŞS, Köşkeroğlu S, Tuna AL (2022) Selenium supplementation mitigates boron toxicity induced growth inhibition and oxidative damage in pepper plants. South Afr J Bot 146:375–382

    Article  Google Scholar 

  • Chen H, Cheng Q, Chen Q, Ye X, Qu Y, Song W, Fahad S, Gao J, Saud S, Xu Y, Shen Y (2022) Effects of selenium on growth and selenium content distribution of virus-free sweet potato seedlings in water culture. Front Plant Sci 13:965649. https://doi.org/10.3389/fpls.2022.965649

  • Chen Y, Mo HZ, Hu LB, Li YQ, Chen J, Yang LF (2014a) The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa. PLoS ONE 9(10):e110901

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Mo HZ, Zheng MY, Xian M, Qi ZQ, Li YQ, Hu LB, Chen J, Yang LF (2014b) Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa. PLoS ONE 9(10):e110904

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheraghi AM, Sajedi NA, Gomarian M (2014) The effect of foliar application of salicylic acid and selenium on agronomic, physiological and quality characteristics of chickpea in rainfed condition. Iran J Pulses Res 5(2):31–42

    Google Scholar 

  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Rizwan M, Gao F, Yuan Y, Huang H, Hossain MM, Xiong S, Cao M, Liu Y, Tu S (2020) Nitric oxide alleviates selenium toxicity in rice by regulating antioxidation, selenium uptake, speciation and gene expression. Environ Pollu 257:113540

    Article  CAS  Google Scholar 

  • Dai Z, Yuan Y, Huang H, Hossain MM, Xiong S, Cao M, Ma LQ, Tu S (2021) Methyl jasmonate mitigates high selenium damage of rice via altering antioxidant capacity, selenium transportation and gene expression. Sci Total Environ 20(756):143848

    Article  Google Scholar 

  • Daneshvar Rad N, Sajedi N, Naieni MR (2019) Effects of salicylic acid and selenium foliar application on salinity tolerance and essential oil yield of moldavian balm (Dracocephalum moldavica L.). Iran J Med Arom Plants Res 34(6):963–975

    Google Scholar 

  • Das S, Majumder B, Biswas AK (2021) Selenium alleviates arsenic induced stress by modulating growth, oxidative stress, antioxidant defense and thiol metabolism in rice seedlings. Int J Phytoremed: 24(7):763–777

  • Das S, Majumder B, Biswas AK (2022) Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. Ecotox 31(3):468–489

    Article  CAS  Google Scholar 

  • Del Pino AM, Guiducci M, D’Amato R, Di Michele A, Tosti G, Datti A, Palmerini CA (2019) Selenium maintains cytosolic Ca2+ homeostasis and preserves germination rates of maize pollen under H2O2-induced oxidative stress. Sci Rep 9(1):1–9

    Google Scholar 

  • Desoky ESM, Merwad AR, Abo El-Maati MF, Mansour E, Arnaout SM, Awad MF, Ramadan MF, Ibrahim SA (2021) Physiological and biochemical mechanisms of exogenously applied selenium for alleviating destructive impacts induced by salinity stress in bread wheat. Agronomy 11(5):926

    Article  CAS  Google Scholar 

  • Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J 105(2):459–476

    Article  CAS  PubMed  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33(3):671–682

    Article  CAS  Google Scholar 

  • Elkelish AA, Soliman MH, Alhaithloul HA, El-Esawi MA (2019) Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol Biochem 137:144–153

    Article  CAS  PubMed  Google Scholar 

  • Elkhatib H, Gabr SM, Roshdy AH, Al-Haleem A, Mostafa M (2017) The impacts of silicon and salicylic acid amendments on yield and fruit quality of salinity stressed tomato plants. Alex Sci Exch J 38:933–939

    Google Scholar 

  • El-Ramady H, Taha N, Shalaby T, Elsakhawy TA, Omara AED, Prokisch J, Bayoumi Y (2021) Nano-selenium and its interaction with other nano-nutrients in soil under stressful plants: A mini-review. Environ Biodiv Soil Sec 5:205–212

    Google Scholar 

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144(2):141–152

    Article  CAS  Google Scholar 

  • Elrashidi MA, Adriano DC, Lindsay WL (1989) Solubility, speciation, and transformations of selenium in soils. In: Jacobs LW (ed) Selenium in agriculture and environment, vol 23. SSSA Special Publication American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, pp 51–63

  • Emam MM, Khattab HE, Helal NM, Deraz AE (2014) Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Austr J Crop Sci 8(4):596–605

    Google Scholar 

  • Fan S, Wu H, Gong H, Guo J (2022) The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Sci Hort 300:111092

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ayyaz A, Chen W, Noor Y, Hu W, Hannan F, Zhou W (2022) Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ Poll 292:118473

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S, Liu Z (2013) Interactive effects of selenium and antimony on the uptake of selenium, antimony and essential elements in paddy-rice. Plant Soil 365(1):375–86

  • Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z, Ni R (2020) Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J Hazard Mat 402:123570

    Article  Google Scholar 

  • Ganesh TNJ, Harinarayanan UND, Raghavan S, Girija S (2022) Foliar selenium application mitigates low-temperature stress in chilli (Capsicum annuum L.) seedlings. Ener Nex 6:100079. https://doi.org/10.1016/j.nexus.2022.100079

  • Gao Y, Xu Y, Ruan J, Yin J (2020) Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed Sprague-Dawley rats. J Sci Food and Agric 100(1):225–234

    Article  CAS  Google Scholar 

  • Gharehbaghli N, Sepehri A (2022) The effect of selenium and hydrogen sulfide on the growth and uptake of elements in garlic (Allium sativum) seedlings under the influence of lead and salinity stress. J Plant Res (Iranian J Biol) 35(3):525–540

    Google Scholar 

  • Gul H, Kinza S, Shinwari ZK, Hamayun M (2017) Effect of selenium on the biochemistry of Zea mays under salt stress. Pak J Bot 49:25–32

    CAS  Google Scholar 

  • Habibi G (2017) Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium supply under salt stress. Acta Physiol Plant 39(10):1–9

    Article  CAS  Google Scholar 

  • Haghighi M, Ramezani MR, Rajaii N (2019) Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium. Mol Biol Rep 46(1):497–503

    Article  CAS  PubMed  Google Scholar 

  • Hassan A, Durrani LA (2021) Exogenous application of gibberellic acid and selenium to endorse quality and yield of fodder maize under rainfed conditions. World J Adv Res Rev 12(2):291–305

    Article  CAS  Google Scholar 

  • Hasan MM, Alharbi BM, Alhaithloul HA, Abdulmajeed AM, Alghanem SM, Al-Mushhin AA, Jahan MS, Corpas FJ, Fang XW, Soliman MH (2021) Spermine-mediated tolerance to selenium toxicity in wheat (Triticum aestivum L.) depends on endogenous nitric oxide synthesis. Antioxidants 10(11):1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161(3):297–307

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132(1):259–269

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R, Woch W, Hasanuzzaman M (2018) Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant Physiol Biochem 127:446–456

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short term chilling stress on cucumber plants. Biol Trace Elem Res 138(1):307–315

    Article  CAS  PubMed  Google Scholar 

  • Hu FQ, Jiang SC, Wang Z, Hu K, Xie YM, Zhou L, Zhu JQ, Xing DY, Du B (2022) Seed priming with selenium: Effects on germination, seedling growth, biochemical attributes, and grain yield in rice growing under flooding conditions. Plant Direct 6(1):e378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, Cao M, Xiong S, Tu S (2021) Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mat 401:123393

    Article  CAS  Google Scholar 

  • Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68(6):1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103

    Article  CAS  PubMed  Google Scholar 

  • Irato P, Santovito G (2021) Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10(4):579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal SK, Prakash R, Skalny AV, Skalnaya MG, Grabeklis AR, Skalnaya AA, Tinkov AA, Zhang F, Guo X, Prakash NT (2018) Synergistic effect of selenium and UV-B radiation in enhancing antioxidant level of wheatgrass grown from selenium rich wheat. J Food Biochem 42(5):e12577

    Article  Google Scholar 

  • Jia H, Song Z, Wu F, Ma M, Li Y, Han D, Yang Y, Zhang S, Cui H (2018) Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco. Environ Exp Bot 153:127–134

    Article  CAS  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7(1):1–4

    Google Scholar 

  • Jiang L, Yang J, Liu C, Chen Z, Yao Z, Cao S (2020) Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Biochem 149:294–300

    Article  CAS  PubMed  Google Scholar 

  • Jiao L, Zhang L, Zhang Y, Wang R, Lu B, Liu X (2022) Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice. Environ Poll 301:118980

    Article  CAS  Google Scholar 

  • Jóźwiak W, Politycka B (2019) Effect of selenium on alleviating oxidative stress caused by a water deficit in cucumber roots. Plants 8(7):217

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimi R, Ghabooli M, Rahimi J, Amerian M (2020) Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. J Plant Nutr 43(14):2226–2242

    Article  CAS  Google Scholar 

  • Khan MI, Jahan B, Alajmi MF, Rehman MT, Khan NA (2019) Exogenously-sourced ethylene modulates defense mechanisms and promotes tolerance to zinc stress in mustard (Brassica juncea L.). Plants 8(12):540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C (2021) Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. Plant Physiol Biochem 164:260–278

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Khan NA (2020a) Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. Physiol Mol Biol Plants 26(6):1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Trivellini A, Chhillar H, Chopra P, Ferrante A, Khan NA, Ismail AM (2020b) The significance and functions of ethylene in flooding stress tolerance in plants. Environ Exp Bot 179:104188

    Article  CAS  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environm Contam Toxicol 65(3):458–465

    Article  CAS  Google Scholar 

  • Kong L, Wang M, Bi D (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45(2):155–163

    Article  CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2020) Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int J Food Sci Agric 14(4):367–378

    Google Scholar 

  • Lan CY, Lin KH, Huang WD, Chen CC (2019) Protective effects of selenium on wheat seedlings under salt stress. Agronomy 9(6):272

    Article  CAS  Google Scholar 

  • Lehotai, N, Kolbert Z, Peto ˝ A, Feigl G, Ord ¨ og¨ A, Kumar D, Tari I, Erdei L (2012) Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. J Exp Bot 63(15):5677–5687

  • Li D, Zhou C, Zhang J, An Q, Wu Y, Li JQ, Pan C (2020) Nanoselenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway. J Agric Food Chem 68(37):9888–9895

    Article  CAS  PubMed  Google Scholar 

  • Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J (2016) Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61(3):291–302

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Li S, Han J, Zeng X, Ling M, Mao J, Li Y, Jiang J (2021) Effect of selenium on tea (Camellia sinensis) under low temperature: Changes in physiological and biochemical responses and quality. Environ Exp Bot 188:104475

    Article  CAS  Google Scholar 

  • Liu X, Zhao Z, Hu C, Zhao X, Guo Z (2016) Effect of sulphate on selenium uptake and translocation in rape (Brassica napus L.) supplied with selenate or selenite. Plant Soil 399(1):295–304

    Article  CAS  Google Scholar 

  • Luo Y, Wei Y, Sun S, Wang J, Wang W, Han D, Shao H, Jia H, Fu Y (2019) Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco. Int J Mol Sci 20(15):3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P, Scampicchio M, Pii Y, Cesco S (2017) Selenium biofortification in Fragaria× ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front Plant Sci 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Rahman MM, Siddiqui MN, Fujita M, Tran LSP (2020) Salicylic acid antagonizes selenium phytotoxicity in rice: Selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. J Hazard Mat 394:122572

    Article  CAS  Google Scholar 

  • Mousavi SAA, Roosta HR, Esmaeilizadeh M, Eshghi S (2022) Alleviating the adverse effects of salinity and alkalinity stresses on some physiological traits by selenium and silicon foliar applications on cucumber (Cucumis sativus L.) plants. J Plant Nutr 1–18. https://doi.org/10.1080/01904167.2022.2043370

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147(1):320–328

    Article  CAS  PubMed  Google Scholar 

  • Naeem M, Naeem MS, Ahmad R, Ihsan MZ, Ashraf MY, Hussain Y, Fahad S (2018) Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Arch Agron Soil Sci 64(1):116–131

    Article  CAS  Google Scholar 

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotox Environ Saf 113:191–200

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN (2014) Selenium (Se) regulates seedling growth in wheat under drought stress. Adv Chem 1–7. https://doi.org/10.1155/2014/143567

  • Naz FS, Yusuf M, Khan TA, Fariduddin Q, Ahmad A (2015) Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem 185:441–448

    Article  CAS  PubMed  Google Scholar 

  • Nazir F, Fariduddin Q, Hussain A, Khan TA (2021) Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu-triggered oxidative burst in tomato. Ecotox Environ Saf 207:111081

    Article  CAS  Google Scholar 

  • Nazir F, Hussain A, Fariduddin Q (2019a) Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 230:544–558

    Article  CAS  PubMed  Google Scholar 

  • Nazir F, Hussain A, Fariduddin Q (2019b) Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environ Exp Bot 162:479–495

    Article  CAS  Google Scholar 

  • Noor J, Ullah A, Saleem MH, Tariq A, Ullah S, Waheed A, Okla MK, Al-Hashimi A, Chen Y, Ahmed Z, Ahmad I (2022) Effect of jasmonic acid foliar spray on the morpho-physiological mechanism of salt stress tolerance in two soybean varieties (Glycine max L.). Plants 11(5):651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mat 287:384–391

    Article  CAS  Google Scholar 

  • Pérez-Millán R, Alfosea-Simón M, Simón-Grao S, Cámara-Zapata JM, Zavala-González EA, Aranda-Martinez A, Shahid MA, García-Sánchez F (2021) Effects of Se application on polyamines and carbon–nitrogen metabolism of pepper plants suffering from Cd toxicity. Agronomy 11(12):2535

    Article  Google Scholar 

  • Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MI (2021) Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Rep 13:1–24

    Google Scholar 

  • Rady MM, Belal HE, Gadallah FM, Semida WM (2020) Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Sci Hortic 266:109290

    Article  CAS  Google Scholar 

  • Ramasamy S, Nandagopal JGT, Balasubramanian M, Girija S (2020) Effect of abscisic acid and selenium foliar sprays on drought mitigation in tomato (Solanum lycopersicum L.). Mater Today Proc 48:191–195

    Article  Google Scholar 

  • Rasool A, Shah WH, Mushtaq NU, Saleem S, Hakeem KR, ul Rehman R, (2022) Amelioration of salinity induced damage in plants by selenium application: A review. South Afr J Bot 147:98–105

    Article  CAS  Google Scholar 

  • Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M (2021) Jasmonic acid: A key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep 40(8):1513–1541

    Article  CAS  PubMed  Google Scholar 

  • Regni L, Palmerini CA, Del Pino AM, Businelli D, D’Amato R, Mairech H, Marmottini F, Micheli M, Pacheco PH, Proietti P (2021) Effects of selenium supplementation on olive under salt stress conditions. Sci Hort 278:109866

    Article  CAS  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–84

    Article  PubMed  Google Scholar 

  • Saad-Allah KM, Sobhy SE, Hassan FA, Al-Yasi H, Gad D (2022) Assessment of selenium contribution to salt and water stress tolerance in hydroponically grown cotton (Gossypium barbadense L.). J Plant Nut 45:2405–2421

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171(5):85–91

    Article  CAS  PubMed  Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants 17(3):215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem MF, Kamal MA, Anjum SA, Shahid M, Raza MAS, Awais M (2018) Improving the performance of Bt-cotton under heat stress by foliar application of selenium. J Plant Nutr 41(13):1711–1723

    Article  CAS  Google Scholar 

  • Saleem MF, Kamal MA, Shahid M, Awais M, Saleem A, Raza MAS, Ma BL (2021) Studying the foliar selenium-modulated dynamics in phenology and quality of terminal heat-stressed cotton (Gossypium hirsutum L.) in association with yield. Plant Biosys Int J Dealing Asp Plant Biol 155(4):668–678

    Google Scholar 

  • Semida WM, El-Mageed A, Taia A, Abdelkhalik A, Hemida KA, Abdurrahman HA, Howladar SM, Leilah AA, Rady MO (2021) Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy 11(5):855

    Article  CAS  Google Scholar 

  • Shah AA, Riaz L, Siddiqui MH, Nazar R, Ahmed S, Yasin NA, Ali A, Mukherjee S, Hussaan M, Javad S, Chaudhry O (2022) Spermine-mediated polyamine metabolism enhances arsenic-stress tolerance in Phaseolus vulgaris by expression of zinc-finger proteins related genes and modulation of mineral nutrient homeostasis and antioxidative system. Environ Poll 300:118941

    Article  CAS  Google Scholar 

  • Shah WH, Rasool A, Tahir I, Rehman RU (2020) Exogenously applied selenium (Se) mitigates the impact of salt stress in Setaria italica L. and Panicum miliaceum L. Nucleus 63(3):327–339

    Article  Google Scholar 

  • Shahid MA, Balal RM, Khan N, Zotarelli L, Liu GD, Sarkhosh A, Fernandez-Zapata JC, Nicolás JJM, Garcia-Sanchez F (2019) Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotox Environ Saf 180:588–599

    Article  CAS  Google Scholar 

  • Shalaby TA, Abd-Alkarim E, El-Aidy F, Hamed ES, Sharaf-Eldin M, Taha N, El-Ramady H, Bayoumi Y, Dos Reis AR (2021) Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotox Environ Saf 212:111962

    Article  CAS  Google Scholar 

  • Sharma S, Bansal A, Dhillon SK, Dhillon KS (2010) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329(1):339–48

    Article  CAS  Google Scholar 

  • Shekari L, Aroiee H, Mirshekari A, Nemati H (2019) Protective role of selenium on cucumber (Cucumis sativus L.) exposed to cadmium and lead stress during reproductive stage role of selenium on heavy metals stress. J Plant Nutr 42(5):529–542

    Article  CAS  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1; 2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Sita K, Sehgal A, Bhardwaj A, Bhandari K, Jha U, Vara Prasad PV, Singh S, Kumar S, Siddique KH, Nayyar H (2022) Selenium supplementation to lentil (Lens culinaris Medik.) under combined heat and drought stress improves photosynthetic ability, antioxidant systems, reproductive function and yield traits. Plant Soil 1–17. https://doi.org/10.1007/s11104-022-05310-x

  • Striker GG (2012) Flooding stress on plants: anatomical, morphological and physiological responses. Botany 1:3–28

    Google Scholar 

  • Tahaei SA, Nasri M, Soleymani A, Ghooshchi F Oveysi M (2022) Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. Biocat Agric Biotec 41:102288. https://doi.org/10.1016/j.bcab.2022.102288

  • Thiruvengadam M, Chung IM (2015) Selenium, putrescine, and cadmium influence health promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 173:185–193

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132(2):236–253

    PubMed  Google Scholar 

  • Verma S, Negi NP, Pareek S, Mudgal G, Kumar D (2022) Auxin response factors in plant adaptation to drought and salinity stress. Physiol Plant 13:e13714

    Google Scholar 

  • Wang J, Ge C, Zhu L, Sun M, Wang F (2021) The application of selenium combined with gibberellin enhances the yield and quality of Chrysanthemum morifolium Ramat cv. Hangju. J Plant Nutr 44(6):791–800

    Article  CAS  Google Scholar 

  • Weijers D, Nemhauser J, Yang Z (2018) Auxin, small molecule, big impact. J Exp Bot 5:133–136

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235

    CAS  PubMed  Google Scholar 

  • Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ (2017) Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci 8:1365

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7(6):4199–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaoqin Y, Jianzhou C, Guangyin W (2009) Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol Plant 31(5):1031–1036

    Article  Google Scholar 

  • Ximénez-Embún P, Alonso I, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52(4):832–838

    Article  PubMed  Google Scholar 

  • Xu BJ, Yu T, Xie Y, Li L, Yang Y, Yu Y, Chen G, Wang (2017) Effect of brassinosteroid and selenium on uptake and accumulation of chromium in yellow flag (Iris pseudacorus). Int J Agric Biol 19:621–628

    Article  CAS  Google Scholar 

  • Xu S, Zhao N, Qin D, Liu S, Jiang S, Xu L, Sun Z, Yan D, Hu A (2021) The synergistic effects of silicon and selenium on enhancing salt tolerance of maize plants. Environ Exp Bot 187:104482

    Article  CAS  Google Scholar 

  • Yang L, Yang H, Bian Z, Lu H, Zhang L, Chen J (2022) The defensive role of endogenous H2S in Brassica rapa against mercury-selenium combined stress. Int J Mol Sci 23(5):2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Sun K, Wang X, Wang K, Kong X, Gao J, Wen D (2021) Melatonin participates in selenium-enhanced cold tolerance of cucumber seedlings. Front Plant Sci 12:786043–786043

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao X, Chu J, He X, Ba C (2011) Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation. Russ J Plant Physiol 58(2):283–289

    Article  CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Tekis SA (2017) The impact of selenium application on enzymatic and non-enzymatic antioxidant systems in Zea mays roots treated with combined osmotic and heat stress. Arch Agron Soil Sci 63(2):261–275

    Article  CAS  Google Scholar 

  • Yousefi Rad M, Safa H (2021) Effect of foliar application of salicylic acid and selenium on yield and yield components of dry land wheat. Cereal Res 11(1):31–41

    Google Scholar 

  • Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotox Environ Saf 129:25–34

    Article  CAS  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329(1):457–468

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153(4):1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hu C, Wang X, Qing X, Wang P, Zhang Y, Zhang X, Zhao X (2019) Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotox Environ Saf 173:314–321

    Article  CAS  Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170(2):220–224

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MIRK is gratefully acknowledging the SERB-DST grant (SRG/2020/001004). FN acknowledges DBT Research Associateship (No. DBT-RA/2022/January/N/1186).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.I.R.K.; software, F.N. and S.K.; Writing—Original draft preparation, F.N., S.K. and M.M.; Writing – Review and editing, M.I.R.K., F.N, S.K and M.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Iqbal R. Khan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this review.

Data availability statement

Not applicable.

Additional information

Responsible Editor: Hans Lambers.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Faroza Nazir and Sarika Kumari equally contributed first author

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, F., Kumari, S., Mahajan, M. et al. An explicit story of plant abiotic stress resilience: Overtone of selenium, plant hormones and other signaling molecules. Plant Soil 486, 135–163 (2023). https://doi.org/10.1007/s11104-022-05826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05826-2

Keywords

Navigation