Skip to main content
Log in

Exogenous Application of Selenium Mitigates Cadmium Toxicity in Brassica juncea L. (Czern & Cross) by Up-Regulating Antioxidative System and Secondary Metabolites

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

An Erratum to this article was published on 25 October 2016

Abstract

The main aim of the present study was to examine the role of selenium (Se) in ameliorating the toxic effect of cadmium (Cd) in mustard (Brassica juncea) plants. The plants exposed to elevated levels of Cd exhibited reduced biomass, pigment content, and relative water content (RWC). However, supplementation of Se restores the negative effect of Cd and increases biomass, pigment content, and RWC. Osmolyte (proline and glycine betaine) and sugar content were increased under Cd stress and further increase was observed with addition of Se. Cd decreased protein content and supplementation of Se increases it to appreciable levels. Cd also increased production of H2O2 and lipid peroxidation, electrolyte leakage, and the activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and glutathione reductase. Supplementation of Se decreased accumulation of H2O2 and lipid peroxidation, increased the activities of antioxidant enzymes to greater levels, and regulates Cd accumulation in roots and shoots. Ascorbic acid (AsA) and flavonoids decreased with elevated concentrations of Cd; however, tocopherol and total phenols were increased with the same concentrations of Cd. Se application maintains AsA and flavonoid content, and further increase in tocopherol and total phenols were observed with Se in the present study. Overall the results confirm that exogenous application of Se mitigates the negative effects of Cd stress in mustard plants through the regulation of osmoprotectants, antioxidant enzymes, and secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas SM (2012) Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. J Stress Physiol Biochem 8:268–286

    Google Scholar 

  • Abd_Allah EF, Hashem A, Alqarawi AA, Alwathnani Hend A (2015) Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot 47(2):785–795

    CAS  Google Scholar 

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sharma S (2010) Physio-biochemical attributes in two cultivars of mulberry (M. alba) under NaHCO3 stress. Int J Plant Prod 4:79–86

    CAS  Google Scholar 

  • Ahmad P, Sharma S, Srivastava PS (2007) In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hort Sci Prague 34:115–123

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma A (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011a) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011b) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press Pvt Ltd, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard plants. Fresenius Environ Bull 21:2953–2961

    CAS  Google Scholar 

  • Ahmad A, Hadi F, Ali N (2015) Effective phytoextraction of cadmium (Cd) with increasing concentration of total phenolics and free proline in Cannabis sativa (L.) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int J Phytorem 17:56–65

    Article  CAS  Google Scholar 

  • Akladious SA (2012) Influence of different soaking times with selenium on growth, metabolic activities of wheat seedlings under low temperature stress. Afr J Biotechnol 11:14792–14804

    CAS  Google Scholar 

  • Alqarawi AA, Abd_Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9(1): 802–810

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2011) Cadmium causes oxidative stress in mung bean [Vigna radiata (L.) Wilczek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism. Russ J Plant Physiol 58:92–99

    Article  CAS  Google Scholar 

  • Backer H, Frank O, De Angells B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or ocetylaned tocopherol. Nutri Rep Int 21:531–536

    Google Scholar 

  • Barakat H (2003) Interactive effects of salinity and certain vitamin on gene expression and cell division. Int J Agric Biol 3:219–225

    Google Scholar 

  • Barrientos EY, Flores CR, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mexican Chem Soc 56:3–9

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Sci 39:205–207

    CAS  Google Scholar 

  • Battin EE, Brumaghim JL (2009) Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55:1–23

    Article  CAS  PubMed  Google Scholar 

  • Bayoumi TY, Eid MH, Metwali EM (2008) Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr J Biotechnol 7:2341–2352

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caltado DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Physiol Plant 73:844–848

    Article  Google Scholar 

  • Cherif J, Mediouni C, Ben Ammar W, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci 23:837–844

    Article  CAS  Google Scholar 

  • Chu TM, Aspinall D, Paleg LG (1974) Stress metabolism. VI. Temperature stress and the accumulation of proline in barley and radish. Aust J Plant Physiol 1:87–89

    Article  CAS  Google Scholar 

  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136:355–363

    Article  CAS  PubMed  Google Scholar 

  • Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agricul Food Chem 51:8067–8072

    Article  CAS  Google Scholar 

  • Cox DN, Bastiaans K (2007) Understanding Australian consumers’ perceptions of selenium and motivations to consume selenium enriched foods. Food Qual Pref 18:66–76

    Article  Google Scholar 

  • Dey PM (1990) Oligosaccharides. In: Dey PM (ed) Methods in plant biochemistry. Carbohydrates. Academic Press, London, pp 189–218

    Chapter  Google Scholar 

  • Diaz J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum l.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Ebbs S, Leonard W (2001) Alteration of selenium transport and volatilization in barley (Hordeum vulgare) by arsenic. J Plant Physiol 158:1231–1233

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A (2013) Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J Hazard Mater 244–245:555–562

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  CAS  PubMed  Google Scholar 

  • Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosys 143:81–96

    Article  Google Scholar 

  • Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol Biochem 43:445–448

    Article  CAS  PubMed  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg D (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonçalves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19(3):223–232

    Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Habibi G (2013) Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric Slov 101:31–39

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012a) Heavy metals in the environment: Current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 7–73

    Chapter  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012b) Selenium and plants health: the physiological role of selenium. In: Aomori C, Hokkaido M (eds) Selenium: sources, functions and health effects. Nova Science Publishers, New York, pp 101–122

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium induced upregulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014) Silicon and selenium: Two vital trace elements in conferring abiotic stress tolerance to plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance vol. 1—Biological techniques. Academic Press, New York, pp 375–420

    Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2015) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 2:2. doi:10.1016/j.sjbs.2015.11.002

    Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138:307–315

    Article  CAS  PubMed  Google Scholar 

  • He PP, Lu XZ, Wang GY (2004) Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environ Int 30:167–172

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modifications of the root plasma membrane lipid composition of cadmium treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycine betaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plant 26:259–272

    Article  CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in ascorbate-deficient arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21:125–131

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA (2009) None-enzymatic antioxidant changes in Withania somnifera with varying drought stress levels. Eur J Sci Res 4:64–67

    Google Scholar 

  • Jégu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M (2000) The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell 12:97–109

    Article  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal uptake by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Jung C, Maeder V, Funk F, Frey B, Sticher H, Frossard E (2003) Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil 252:301–312

    Article  CAS  Google Scholar 

  • Kapoor D, Kaur S, Bhardwaj R (2014) Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Res Int. Article ID 726070

  • Khattab H (2004) Metabolic and oxidative responses associated with exposure of Eruca sativa (Rocket) plants to different levels of selenium. Int J Agric Biol 6:1101–1106

    CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviates cadmium-induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Kuznetsov VV, Kholodova VP, Kuznetsov VIV, Yagodin BA (2003) Selenium regulates the water status of plants exposed to drought. Dok Biol Sci 390:266–268

    Article  CAS  Google Scholar 

  • Li NY, Fu QL, Zhuang P, Guo B, Zou B, Li ZA (2012a) Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Int J Phytoremed 14:162–173

    Article  Google Scholar 

  • Li X, Zhao M, Guo L, Huan L (2012b) Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua. J Environ Sci 24:1511–1518

    Article  CAS  Google Scholar 

  • Lopes CKB, Schulman HM, Hermes-Lima M (1999) Poly-phenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472:142–152

    Article  CAS  PubMed  Google Scholar 

  • Luck H (1974) Estimation of catalase, methods in enzymatic analysis. Academic Press, New York, p 885

    Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis JC, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80

    Article  CAS  Google Scholar 

  • Marquez-Garcıa B, Fernandez-Recamales MA, Cordoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of erica andevalensis. J Bot. Article ID 936950

  • Mendoza-Cozatl D, Devars S, Loza-Tavera H, Moreno-Sanchez R (2002) Cadmium accumulation in the chloroplast of Euglena gracilis. Plant Physiol 115:276–283

    Article  CAS  Google Scholar 

  • Mervi S, Marja T, Helinä H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311–319

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Namdjoyan S, Namdjoyan S, Kermanian H (2012) Induction of phytochelatin and responses of antioxidants under cadmium stress in safflower (Carthamus tinctorius) seedlings. Turk J Bot 36:495–502

    CAS  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas JF, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pandey N, Singh GK (2012) Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). J Environ Biol 33:201–206

    CAS  PubMed  Google Scholar 

  • Pennanen A, Tailin X, Hartikainen H, Xue TL (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    CAS  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Lytle CM, Shang C, Lugo T, Terry N (1998) Selenium volatilization and assimilation by hybrid poplar (Populus tremula X alba). J Exp Bot 49:1889–1892

    CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hort 129:232–237

    Article  CAS  Google Scholar 

  • Rahoui S, Chaoui A, El Ferjani E (2010) Reserve mobilization disorder in germinating seeds of Vicia faba L. exposed to cadmium. J Plant Nutr 33:809–817

    Article  CAS  Google Scholar 

  • Ramoutar RR, Brumaghim JL (2007) Effects of inorganic selenium compounds on oxidative DNA damage. J Inorg Biochem 101:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O ·−2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sakihama Y, Yamasaki H (2002) Lipid peroxidation induces by phenolics in conjunction with aluminium ions. Biol Plant 45:249

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sepehri A, Golparvar AR (2011) The effect of drought stress on water relations, chlorophyll content and leaf area in canola cultivars (Brassica napus L.). Electronic J Biol 7:49–53

    Google Scholar 

  • Shao HB, Chu LY, Zhao HL, Kang C (2008) Primary antioxidant free radical scavenging and redox signalling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trend Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Ali HM (2012) Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int J Mol Sci 13:6604–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127

    Article  CAS  PubMed  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava M, Ma LQ, Rathinasabapathi B, Srivastava P (2009) Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 100:1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Stanisława P, Ewelina R, Ewa K (2011) The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J Plant Physiol 168:220–225

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  PubMed  Google Scholar 

  • Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chemico-Bioll Interact 160:1–40

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Rossum MWPC, Alberda M, Van der Plas LHW (1997) Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci 130:207–216

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vikhreva VA, Balakhnina TI, Gins VK (2002) Effect of selenium on intensity of peroxide processes and enzyme activity in Caucasian goat’s rue leaves under extreme growing condition. Russ Agric Sci 2:1–4

    Google Scholar 

  • Watts DL (1994) The nutritional relationships of selenium. J Orthomol Med 9:111–117

    Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis, A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 26:485–493

    Article  Google Scholar 

  • Wu FB, Zhang GP (2002) Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr 25:2745–2761

    Article  CAS  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil 27:55–61

    Article  Google Scholar 

  • Yathavakilla SKV, Caruso JA (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC-ICPMS. Anal Bioanal Chem 389:715–723

    Article  CAS  PubMed  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochem Biophys Acta 1797:1428–1438

    CAS  PubMed  Google Scholar 

  • Zhao Y (2011) Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L. Afr J Agric Res 7:3813–3818

    Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No RGP- VPP-271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00344-016-9632-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, P., Abd Allah, E.F., Hashem, A. et al. Exogenous Application of Selenium Mitigates Cadmium Toxicity in Brassica juncea L. (Czern & Cross) by Up-Regulating Antioxidative System and Secondary Metabolites. J Plant Growth Regul 35, 936–950 (2016). https://doi.org/10.1007/s00344-016-9592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9592-3

Keywords

Navigation