Skip to main content

Advertisement

Log in

Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Soils harbour a remarkable diversity of interacting fungi, bacteria, and other microbes: together these perform a wide variety of ecological roles from nutrient cycling and organic matter breakdown, to pathogenic and symbiotic interactions with plants. Many studies demonstrate the role of microbes in plant-soil feedbacks and their interactions with plants. However, interactions among microbes are seldom addressed, and there is no consensus regarding the nature and outcomes of interactions among microbial functional guilds.

Scope

Here, we critically review what is known about microbe-microbe interactions among functional guilds within the plant-soil system, with the aim to initiate a path to disentangling the “microbe black-box”. Our review confirms that the nature of microbial interactions among major functional guilds is explained by niche theory. This means that, among microbes, a competitive relationship is likely when their benefits to plants, source of carbon and nutrients, or nutrient scavenging mechanisms overlap, while a neutral-to-facilitative relationship is likely when these microbial traits differ or complement each other.

Conclusions

We highlight the numerous knowledge gaps and provide a framework to characterise microbe-microbe interactions that offers insight into the contributions of microbes to key ecosystem functions such as carbon sequestration and nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

C:

Carbon

DSE:

Dark septate endophyte

EMF:

Ectomycorrhizal fungi

FRE:

Fine root endophytes

N:

Nitrogen

NFB:

Nitrogen-fixing bacteria

P:

Phosphorus

PAT:

Plant pathogens

PSF:

Plant-soil feedback

SAP:

Soil saprotrophs

References

  • Abdullah AS, Moffat CS, Lopez-Ruiz FJ et al (2017) Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Front Plant Sci 8:1–12

    Article  Google Scholar 

  • Aguilar-Trigueros CA, Powell JR, Anderson IC, Antonovics J, Rillig MC (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438

    Article  CAS  PubMed  Google Scholar 

  • Albornoz FE, Lambers H, Turner BL et al (2016) Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequence. Ecol Evol 6:2368–2377

    Article  PubMed  PubMed Central  Google Scholar 

  • Albornoz FE, Burgess TI, Lambers H et al (2017) Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J Ecol 105:549–557

    Article  Google Scholar 

  • Albornoz FE, Ryan MH, Bending GD, Hilton S, Dickie IA, Gleeson DB, Standish RJ (2022) Agricultural land-use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytol 233:1369–1382

    Article  PubMed  Google Scholar 

  • Al-Naimi FA, Garrett KA, Bockus WW (2005) Competition, facilitation, and niche differentiation in two foliar pathogens. Oecologia 143:449–457

    Article  CAS  PubMed  Google Scholar 

  • Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918

    Article  Google Scholar 

  • Arrieta AM, Iannone LJ, Scervino JM, Vignale MV, Novas MV (2015) A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol 17:146–154

    Article  Google Scholar 

  • Avila JM, Gallardo A, Ibáñez B, Gomez-Aparicio L (2021) Pathogen-induced tree mortality modifies key components of the C and N cycles with no changes on microbial functional diversity. Ecosystems 24:451–466

    Article  CAS  Google Scholar 

  • Barrett LG, Zala M, Mikaberidze A, Alassimone J, Ahmad M, McDonald BA, Sánchez-Vallet A (2021) Mixed infections alter transmission potential in a fungal plant pathogen. Environ Microbiol 23:2315–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JA, Klironomos J (2019) Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol 222:91–96

    Article  PubMed  Google Scholar 

  • Berthelot C, Leyval C, Chalot M, Blaudez D (2019) Interactions between dark septate endophytes, ectomycorrhizal fungi and root pathogens in vitro. FEMS Microbiol Lett 366:1–8

    Article  Google Scholar 

  • Birnbaum C, Morald TK, Tibbett M et al (2018) Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms. Ecol Evol 8:8652–8664

    Article  PubMed  PubMed Central  Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Buswell JA, Odier E, Kirk TK (1987) Lignin biodegradation. Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Card SD, Hume DE, Roodi D, McGill CR, Millner JP, Johnson RD (2015) Beneficial endophytic microorganisms of Brassica–a review. Biol Control 90:102–112

    Article  Google Scholar 

  • Cázares E, Smith JE (1996) Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon coast range soils. Mycorrhiza 6:65–67

    Google Scholar 

  • Coonan EC, Kirkby CA, Kirkegaard JA, Amidy MR, Strong CL, Richardson AE (2020) Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr Cycl Agroecosystems 117:273–298

    Article  CAS  Google Scholar 

  • Cooper AJ, Latunde-Dada AO, Woods-Tör A et al (2008) Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. Mol Plant-Microbe Interact 21:745–756

    Article  CAS  PubMed  Google Scholar 

  • Cortois R, De Deyn GB (2012) The curse of the black box. Plant Soil 350:27–33

    Article  CAS  Google Scholar 

  • Crawford KM, Bauer JT, Comita LS et al (2019) When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol Lett 22:1274–1284

    Article  PubMed  Google Scholar 

  • De Mesquita CP, Sartwell SA, Ordemann EV, Porazinska DL, Farrer EC, King AJ, Spasojevic MH, Smith JG, Sudin KN, Schmidt SK (2018) Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol 36:63–74

    Article  Google Scholar 

  • De Souza EM, Granada CE, Sperotto RA (2016) Plant pathogens affecting the establishment of plant-symbiont interaction. Front Plant Sci 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Deveau A, Palin B, Delaruelle C et al (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Thioulouse J, Sanguin H et al (2013) Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biol Biochem 57:468–476

    Article  CAS  Google Scholar 

  • Dighton J (2007) Nutrient cycling by saprotrophic fungi in terrestrial habitats. Mycota 4:271–279

    Google Scholar 

  • Dreischhoff S, Das IS, Jakobi M et al (2020) Local responses and systemic induced resistance mediated by ectomycorrhizal fungi. Front Plant Sci 11:1908

    Article  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988) Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus. New Phytol 108:471–476

    Article  CAS  Google Scholar 

  • Dutt A, Andrivon D, Le May C (2022) Multi-infections, competitive interactions, and pathogen coexistence. Plant Pathol 71:5–22

    Article  Google Scholar 

  • Elgersma KJ, Ehrenfeld JG, Yu S, Vor T (2011) Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling. Oecologia 167:733–745

    Article  PubMed  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Fernandez CW, Kennedy PG (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49

    Article  CAS  Google Scholar 

  • Field KJ, Rimington WR, Bidartondo MI et al (2016) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J 10:1514–1526

    Article  CAS  PubMed  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Founoune H, Duponnois R, Bâ A (2002) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (a. Cunn. Ex G. Don) in glasshouse conditions. Ann For Sci 59:39–98

    Article  Google Scholar 

  • Fracchia S, Garcia-Romera I, Godeas A, Ocampo JA (2000) Effect of the saprophytic fungus fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. Plant Soil 223:177–186

    Article  Google Scholar 

  • García Parisi PA, Lattanzi FA, Grimoldi AA, Omacini M (2015) Multi-symbiotic systems: functional implications of the coexistence of grass-endophyte and legume-rhizobia symbioses. Oikos 124:553–560

    Article  Google Scholar 

  • Gilbert L, Johnson D (2017) Plant–plant communication through common mycorrhizal networks. Adv Bot Res 82:83–97

    Article  CAS  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:1–17

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hayden HL, Savin KW, Wadeson J et al (2018) Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol 9:859

    Article  PubMed  PubMed Central  Google Scholar 

  • Hervé V, Le Roux X, Uroz S et al (2014) Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environ Microbiol 16:2238–2252

    Article  PubMed  Google Scholar 

  • Hilbig BE, Allen EB (2015) Plant-soil feedbacks and competitive interactions between invasive Bromus diandrus and native forb species. Plant Soil 392:191–203

    Article  CAS  Google Scholar 

  • Hiscox J, O’Leary J, Boddy L (2018) Fungus wars: basidiomycete battles in wood decay. Stud Mycol 89:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardol P, Veen GF, Teste FP, Perring MP (2015) Peeking into the black box: a trait-based approach to predicting plant-soil feedback. New Phytol 206:1–4

    Article  PubMed  Google Scholar 

  • Karvonen A, Jokela J, Laine AL (2019) Importance of sequence and timing in parasite coinfections. Trends Parasitol 35:109–118

    Article  PubMed  Google Scholar 

  • Kemen E (2014) Microbe-microbe interactions determine oomycete and fungal host colonization. Curr Opin Plant Biol 20:75–81

    Article  PubMed  Google Scholar 

  • Koide RT, Sharda JN, Herr JR, Malcolm GM (2008) Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–233

    Article  PubMed  Google Scholar 

  • Kulmatiski A, Beard K, Stevens J (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  • Lacroix C, Seabloom EW, Borer ET (2014) Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytol 204:424–433

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Albornoz F, Kotula L et al (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424:11–33

    Article  CAS  Google Scholar 

  • Larimer AL, Bever JD, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090–2096

    Article  Google Scholar 

  • Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920

    Article  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Madeira AC, Fryett KP, Rossall S, Clark JA (1993) Interaction between Ascochyta fabae and Botrytis fabae. Mycol Res 97:1217–1222

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155

    Article  PubMed  Google Scholar 

  • Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu Rev Phytopathol 10:429–454

    Article  CAS  PubMed  Google Scholar 

  • Moora M, Davison J, Öpik M et al (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Karthik S (2021) Epipremnum aureum (Araceae) roots associated simultaneously with Glomeromycotina. Mucoromycotina and Ascomycota fungi Botanica Complutensis 45:e72399

    Article  Google Scholar 

  • Muthukumar T, Muthuraja RM (2016) Arbuscular mycorrhizal and dark septate endophyte fungal associations in Asparagus. Turk J Bot 40:662–675

    Article  Google Scholar 

  • Neville J, Tessier J, Morrison I, Scarratt J (2002) Soil depth distribution of ecto-and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl Soil 19:209–216

    Article  Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Scervino JM (2011) Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis 55:19–28

    Article  Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Orchard S, Standish RJ, Dickie IA et al (2017) Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27:619–638

    Article  PubMed  Google Scholar 

  • Pagano MC, Scotti MR (2008) Arbuscular and ectomycorrhizal colonization of two Eucalyptus species in semiarid Brazil. Mycoscience 49:379–384

    Article  CAS  Google Scholar 

  • Pereira E, Coelho V, Tavares RM et al (2012) Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza 22:41–49

    Article  CAS  PubMed  Google Scholar 

  • Perelló A, Simón MR, Arambarri AM (2002) Interactions between foliar pathogens and the saprophytic microflora of the wheat (Triticum aestivum L.) phylloplane. J Phytopathol 150:232–243

    Article  Google Scholar 

  • Pozo MJ, Slezack-Deschaumes S, Dumas-Gaudot E, Gianinazzi S, Azcón-Aguilar C (2002) Plant defense responses induced by arbuscular mycorrhizal fungi. In: Mycorrhizal Technology in Agriculture. Birkhäuser, Basel, pp 103–111

    Chapter  Google Scholar 

  • Putten W, Bardgett R, Bever J (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Article  Google Scholar 

  • Rankin DJ, Bargum K, Kokko H (2007) The tragedy of the commons in evolutionary biology. Trends Ecol Evol 22:643–651

    Article  PubMed  Google Scholar 

  • Raven JA (2012) Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. Plant Sci 188:25–35

    Article  PubMed  Google Scholar 

  • Reininger V, Sieber TN (2012) Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLoS One 7:e42865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reininger V, Sieber TN (2013) Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza. Environ Microbiol Rep 5:892–898

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wendt S, Antonovics J, Hempel S, Kohler J, Wehner J, Caruso T (2014) Interactive effects of root endophytes and arbuscular mycorrhizal fungi on an experimental plant community. Oecologia 174:263–270

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles: Tansley review. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rojas X, Guo J, Leff JW, McNear DH, Fierer N, McCulley RL (2016) Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microb Ecol 72:197–206

    Article  CAS  PubMed  Google Scholar 

  • Romón P, Troya M, de Gamarra MEF et al (2008) Fungal communities associated with pitch canker disease of Pinus radiata caused by fusarium circinatum in northern Spain: association with insects and pathogen-saprophyte antagonistic interactions. Can J Plant Pathol Can Phytopathol 30:241–253

    Article  Google Scholar 

  • Rozmoš M, Bukovská P, Hršelová H, Kotianová M, Dudáš M, Gančarčíková K, Jansa J (2021) Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. The ISME Journal 20:1–10

    Google Scholar 

  • Scherlach K, Partida-Martinez LP, Dahse H-M, Hertweck C (2006) Antimitotic Rhizoxin derivatives from a cultured bacterial endosymbiont of the Rice pathogenic fungus Rhizopus microsporus. J Am Chem Soc 128:11529–11536

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Nicolás C, Bentzer J et al (2016) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209:1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Sillo F, Zampieri E, Giordano L et al (2015) Identification of genes differentially expressed during the interaction between the plant symbiont Suillus luteus and two plant pathogenic allopatric Heterobasidion species. Mycol Prog 14:1–13

    Article  Google Scholar 

  • Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Syst 22:115–143

    Article  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Song Z, Vail A, Sadowsky MJ, Schilling JS (2012) Competition between two wood-degrading fungi with distinct influences on residues. FEMS Microbiol Ecol 79:109–117

    Article  CAS  PubMed  Google Scholar 

  • Soudzilovskaia NA, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov K, Brundrett MC, Gomes SI, Merckx V, Tedersoo L (2020) FungalRoot: global online database of plant mycorrhizal associations. New Phytol 227:955–966

    Article  PubMed  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci 104:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su ZZ, Mao LJ, Li N, Feng XX, Yuan ZL, Wang LW et al (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8:1–14

    Google Scholar 

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367:6480

    Article  Google Scholar 

  • Tellenbach C, Sumarah MW, Grünig CR, Miller JD (2013) Inhibition of Phytophthora species by secondary metabolites produced by the dark septate endophyte Phialocephala europaea. Fungal Ecol 6:12–18

    Article  Google Scholar 

  • Teste FP, Jones MD, Dickie IA (2020) Dual-mycorrhizal plants: their ecology and relevance. New Phytol 225:1835–1851

    Article  PubMed  Google Scholar 

  • Tollenaere C, Susi H, Laine AL (2016) Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci 21:80–90

    Article  CAS  PubMed  Google Scholar 

  • Vandermeer JH (1972) Niche theory. Annu Rev Ecol Syst:107–132

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    Article  PubMed  Google Scholar 

  • Vignale MV, Iannone LJ, Scervino JM, Novas MV (2018) Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil 422:267–281

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wilschut RA, van der Putten WH, Garbeva P, Harkes P, Konings W, Kulkarni P et al (2019) Root traits and belowground herbivores relate to plant–soil feedback variation among congeners. Nat Commun 10:1–9

    Article  CAS  Google Scholar 

  • Yakti W, Kovács GM, Franken P (2019) Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS Microbiol Ecol 95:1–12

    Article  Google Scholar 

  • Zampieri E, Giordano L, Lione G et al (2017) A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont. New Phytol 213:1836–1849

    Article  PubMed  Google Scholar 

  • Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM et al (2020) Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev 95:409–433

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe E. Albornoz.

Additional information

Responsible Editor: Benjamin L. Turner.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albornoz, F.E., Prober, S.M., Ryan, M.H. et al. Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function. Plant Soil 476, 301–313 (2022). https://doi.org/10.1007/s11104-022-05479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05479-1

Keywords

Navigation