Skip to main content
Log in

Could root-excreted iron ligands contribute to cadmium and zinc uptake by the hyperaccumulator Noccaea caerulescens?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of various mechanisms of Cd2+ and Zn2+ root uptake through modelling, including interactions with Fe uptake.

Methods

Four increasingly complex models were developed and tested against measured uptake by the hyperaccumulator Noccaea caerulescens grown on three contaminated soils. Model 1 formalises root uptake of free hydrated ions only, to which the dissociation of soil-borne metal complexes was added in Model 2, together with the root uptake of these complexes through the Fe pathway in Model 3. Model 4 represents Strategy I for Fe uptake, with Cd2+ and Zn2+ complexed by a root organic exudate hijacking the Fe adsorption/reduction pathway.

Results

Model 1 enables a good prediction of Cd and Zn uptake in acidic or neutral soils. In contrast, the high Cd uptake in the alkaline soil cannot be reached either by simulating additionnally the dissociation of Cd complexes with soil-borne ligands (Model 2), nor by replicating their uptake through the Fe pathway (Model 3). These results suggest that the plant increases the Cd availability in alkaline soil during the uptake process. Supporting this idea, the uptake of Cd desorbed from iron hydroxide and calcium carbonate by root exuded ligands for Fe acquisition (simulated in Model 4) can explain the high Cd uptake from alkaline soil.

Conclusions

In acid soils, Cd and Zn uptake can be predicted from their free hydrated concentrations, while in calcareous soils with very low concentrations of free hydrated ions, root exudation for Fe acquisition could make other soil Cd species phytoavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Experimental data are given in Supplementary Material.

References

  • Adhikari T, Rattan RK (2000) Modelling zinc uptake by rice crop using a Barber-Cushman approach. Plant Soil 227:235–242

    Article  CAS  Google Scholar 

  • Allen HE, Hall RH, Brisbin TD (1980) Metal speciation. Effects Aquatic Toxicity Environ Sci Technol 14:441–443

    CAS  PubMed  Google Scholar 

  • Alloway B (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Cadmium. In: Alloway BJ (ed) Heavy metals in soils, Second edn. Blackie Academic & Professional, Glasgow

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association Brussels, Belgium

  • Arnold T, Kirk GJD, Wissuwa M, Frei M, Zhao F-J, Mason TFD, Weiss DJ (2010) Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell Environ 33:370–381

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

    Article  CAS  PubMed  Google Scholar 

  • Bao T, Sun L-N, Sun T-H (2011) The effects of Fe deficiency on low molecular weight organic acid exudation and cadmium uptake by Solanum nigrum L. Acta Agriculturae Scandinavica, Section B — Soil & Plant Sci 61:305–312. https://doi.org/10.1080/09064710.2010.493529

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability. A mechanistic approach. John Wiley & Sons, New York

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201. https://doi.org/10.1007/s11104-012-1240-5

    Article  CAS  Google Scholar 

  • Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M, Verbruggen N, D-y C, Salt DE (2012) Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS One 7:e35121. https://doi.org/10.1371/journal.pone.0035121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callot G, Dupuis M (1980) Le calcaire actif des sols et sa signification. Bulletin de l'Assocition Française d'Etude des Sols: 17–26

  • Chakraborty P (2010) Study of cadmium–humic interactions and determination of stability constants of cadmium–humate complexes from their diffusion coefficients obtained by scanned stripping voltammetry and dynamic light scattering techniques. Anal Chim Acta 659:137–143. https://doi.org/10.1016/j.aca.2009.11.043

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213. https://doi.org/10.1104/pp.50.2.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-T, Wang Y, Yeh K-C (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72. https://doi.org/10.1016/j.pbi.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  Google Scholar 

  • Cline GR, Powell PE, Szaniszlo PJ, Reid CPP (1982) Comparison of the abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution. Soil Sci Soc Am J 46:1158–1164. https://doi.org/10.2136/sssaj1982.03615995004600060008x

    Article  CAS  Google Scholar 

  • Cline GR, Powell PE, Szaniszlo PJ, Reid CPP (1983) Comparison of the abilities of hydroxamic and other natural organic acids to chelate iron and other ions in soil. Soil Sci 136:145–157

    Article  CAS  Google Scholar 

  • Custos J-M, Moyne C, Treillon T, Sterckeman T (2014) Contribution of cd-EDTA complexes to cadmium uptake by maize: a modelling approach. Plant Soil 374:497–512

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Merckx R (2006a) Labile cd complexes increase cd availability to plants. Environ Sci Technol 40:830–836

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2006b) Metal complexes increase uptake of Zn and cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 289:171–185

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (cd, co, cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications: a review. Eur J Soil Sci 60:590–612

    Article  CAS  Google Scholar 

  • Dytrtová JJ, Jakl M, Šestáková I, Zins E-L, Schröder D, Navrátil T (2011) A new approach to study cadmium complexes with oxalic acid in soil solution. Anal Chim Acta 693:100–105. https://doi.org/10.1016/j.aca.2011.03.028

    Article  CAS  PubMed  Google Scholar 

  • Faivre R, Ioos B, Mahévas S, Makowski D, Monod H (eds) (2013) Analyse de sensibilité et exploration de modèles. Editions Quae, Versailles, p 324

  • Furrer G, Stumm W (1986) The coordination chemistry of weathering: I. dissolution kinetics of δ-Al2O3 and BeO. Geochim Cosmochim Acta 50:1847–1860. https://doi.org/10.1016/0016-7037(86)90243-7

    Article  CAS  Google Scholar 

  • Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287. https://doi.org/10.1007/s11104-014-2208-4

    Article  CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820. https://doi.org/10.1104/pp.104.3.815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halen H, Garcia-Navarro M, Van Bladel R (1991) Adsorption du cadmium dans les sols calcaires du Sud-Est de l’Espagne. Agronomie 11:35–44

    Article  Google Scholar 

  • Hough RL, Tye AM, Crout NMJ, McGrath SP, Zhang H, Young SD (2005) Evaluating a ‘free ion activity model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant Soil 270:1–12

    Article  CAS  Google Scholar 

  • John J, Salbu B, Gjessing ET, Bjørnstad HE (1988) Effect of pH, humus concentration and molecular weight on conditional stability constants of cadmium. Water Res 22:1381–1388. https://doi.org/10.1016/0043-1354(88)90094-2

    Article  CAS  Google Scholar 

  • Juste C, Pouget R (1972) Appréciation du pouvoir chlorosant des sols par un nouvel indice faisant intervenir le calcaire actif et le fer facilement extractible. Compte-rendus de l'Académie des Sciences 58:352–364

    CAS  Google Scholar 

  • Kallay N, Tomašić V, Žalac S, Brečević L (1997) Calorimetric investigation of kinetics of solid phase dissolution: calcium carbonate dissolution in aqueous EDTA solution. J Colloid Interface Sci 188:68–74. https://doi.org/10.1006/jcis.1996.4729

    Article  CAS  Google Scholar 

  • Khaokaew S, Chaney RL, Landrot G, Ginder-Vogel M, Sparks DL (2011) Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions. Environ Sci Technol 45:4249–4255. https://doi.org/10.1021/es103971y

    Article  CAS  PubMed  Google Scholar 

  • Kim J-O, Lee Y-W, Chung J (2013) The role of organic acids in the mobilization of heavy metals from soil. KSCE J Civ Eng 17:1596–1602. https://doi.org/10.1007/s12205-013-0323-z

    Article  Google Scholar 

  • Kirkby E (2012) Introduction, definition and classification of nutrients. In: Marshner P (ed) Marschner's mineral nutrition of higher plants, Third edn. Elsevier, London

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Lazo DE, Dyer LG, Alorro RD (2017) Silicate, phosphate and carbonate mineral dissolution behaviour in the presence of organic acids: a review. Miner Eng 100:115–123. https://doi.org/10.1016/j.mineng.2016.10.013

    Article  CAS  Google Scholar 

  • Li T, Liang C, Han X, Yang X (2013a) Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere 91:970–976

    Article  Google Scholar 

  • Li T, Tao Q, Liang C, Shohag MJI, Yang X, Sparks DL (2013b) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255. https://doi.org/10.1016/j.envpol.2013.07.025

    Article  CAS  PubMed  Google Scholar 

  • Li T, Xu Z, Han X, Yang X, Sparks DL (2012) Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii and its effect on the mobility of zinc. Chemosphere 88:570–576

    Article  CAS  Google Scholar 

  • Lide DR (ed) (2010) CRC Handbook of Chemistry and Physics, 90th Edition (Internet Version 2010). CRC Press/Taylor and Francis, Boca Raton, p 2758

  • Lin Z, Schneider A, Nguyen C, Sterckeman T (2014) Can ligand addition to soil enhance cd phytoextraction? A mechanistic model study. Environ Sci Pollut Res 21:12811–12826. https://doi.org/10.1007/s11356-014-3218-8

    Article  CAS  Google Scholar 

  • Lin Z, Schneider A, Sterckeman T, Nguyen C (2016) Ranking of mechanisms governing the phytoavailability of cadmium in agricultural soils using a mechanistic model. Plant Soil 399:89–107. https://doi.org/10.1007/s11104-015-2663-6

    Article  CAS  Google Scholar 

  • Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5:821–840. https://doi.org/10.1080/01904168209363012

    Article  CAS  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao F-J, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367

    Article  CAS  Google Scholar 

  • Manceau A, Lanson B, Schlegel ML, Hargé JC, Musso M, Eybert-Bérard L, Hazemann J-L, Chateigner D, Lamble GM (2000) Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am J Sci 300:289–343

    Article  CAS  Google Scholar 

  • Mantoura RFC, Dickson A, Riley JP (1978) The complexation of metals with humic materials in natural waters. Estuar Coast Mar Sci 6:387–408. https://doi.org/10.1016/0302-3524(78)90130-5

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

  • Martin-Garin A, Van Cappellen P, Charlet L (2003) Aqueous cadmium uptake by calcite: a stirred flow-through reactor study. Geochim Cosmochim Acta 67:2763–2774

    Article  CAS  Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372

    Article  CAS  Google Scholar 

  • McBride MB (1980) Chemisorption of Cd2+ on calcite surfaces. Soil Sci Soc Am J 44:26–28. https://doi.org/10.2136/sssaj1980.03615995004400010006x

    Article  CAS  Google Scholar 

  • Mehra O, Jackson M (1960) Clays and clay minerals. Can J Soil Sci 1–22

  • Mengel K (1994) Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil 165:275–283. https://doi.org/10.1007/bf00008070

    Article  CAS  Google Scholar 

  • Mullins GL, Sommers LE, Barber SA (1986) Modelling the plant uptake of cadmium and zinc from soils treated with sewage sludge. Soil Sci Soc Am J 50:1245–1250

    Article  CAS  Google Scholar 

  • Pettersson C, Håkansson K, Karlsson S, Allard B (1993) Metal speciation in a humic surface water system polluted by acidic leachates from a mine deposit in Sweden. Water Res 27:863–871. https://doi.org/10.1016/0043-1354(93)90151-7

    Article  Google Scholar 

  • Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through phytosiderophore secretion: a modelling study. Plant Cell Environ 34:2038–2046

    Article  CAS  Google Scholar 

  • Rauret G, Lopez-Sanchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  CAS  Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: contribution of apoplast and of high- and low-affinity membrane transport systems. Environ Exp Bot 67:235–242

    Article  CAS  Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2010) Determination of the different components of cadmium short-term uptake by roots. J Plant Nutr Soil Sci 173:935–945

    Article  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremed 3:145–172

    Article  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697. https://doi.org/10.1038/17800

    Article  CAS  PubMed  Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234. https://doi.org/10.1111/j.1399-3054.1987.tb06137.x

    Article  Google Scholar 

  • Römheld V, Marschner H (1983) Mechanism of iron uptake by peanut plants. I. Fe(III) reduction, chelate splitting, and release of phenolics. Plant Physiol 71:949–954. https://doi.org/10.1104/pp.71.4.949

    Article  PubMed  PubMed Central  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice. A guide to assessing scientific models. John Wiley & Sons, Chichester

  • Schenkeveld WDC, Reichwein AM, Temminghoff EJM, van Riemsdijk WH (2014) Considerations on the shuttle mechanism of FeEDDHA chelates at the soil-root interface in case of Fe deficiency. Plant Soil 379:373–387. https://doi.org/10.1007/s11104-014-2057-1

    Article  CAS  Google Scholar 

  • Schneider A (2008) An exchange method to investigate the kinetics of cd complexation in soil solutions. Environ Sci Technol 42:4076–4082

    Article  CAS  Google Scholar 

  • Schneider A, Lin Z, Sterckeman T, Nguyen C (2018) Comparison between numeric and approximate analytic solutions for the prediction of soil metal uptake by roots. Example Cadmium Sci Total Environ 619–620:1194–1205. https://doi.org/10.1016/j.scitotenv.2017.11.069

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Nguyen VX, Viala Y, Violo V, Cornu J-Y, Sterckeman T, Nguyen C (2019) A method to determine the soil-solution distribution coefficients and the concentrations for the free ion and the complexes of trace metals: application to cadmium. Geoderma 346:91–102

    Article  CAS  Google Scholar 

  • Sobanska S (1999) Etude de la spéciation du plomb et du zinc dans des poussières industrielles et dans un sol contaminé. Approche par méthodes spectroscopiques. UFR de Chimir. Université des Sciences et Technologies de Lille

  • Sposito G (1989) The chemistry of soils. Oxford University Press, Oxford

  • Sterckeman T, Cazes Y, Gonneau C, Sirguey C (2017) Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418:523–540

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the north of France. Water Air Soil Pollut 135:173–194

    Article  CAS  Google Scholar 

  • Sterckeman T, Moyne C, Le TD (2021) A modelling study to evaluate the mechanisms of root iron uptake by Noccaea caerulescens. Plant Soil Online 463:125–144. https://doi.org/10.1007/s11104-021-04873-5

    Article  CAS  Google Scholar 

  • Sterckeman T, Perriguey J, Caël M, Schwartz C, Morel JL (2004) Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: consequences for the assessment of the soil quantity and capacity factors. Plant Soil 262:289–302

    Article  CAS  Google Scholar 

  • Sterckeman T, Thomine S (2020) Mechanisms of cadmium accumulation in plants. Crit Rev Plant Sci 39:322–359

    Article  Google Scholar 

  • Suess E (1970) Interaction of organic compounds with calcium carbonate—I. Assoc Phenom Geochem Impl Geochimica et Cosmochimica Acta 34:157–168. https://doi.org/10.1016/0016-7037(70)90003-7

    Article  CAS  Google Scholar 

  • Tamm O (1922) Om bestämning av de oorganiska komponenterna i markens gelkomplex

  • Tao Q, Hou D, Yang X, Li T (2016) Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant Soil 398:139–152. https://doi.org/10.1007/s11104-015-2651-x

    Article  CAS  Google Scholar 

  • Tao Q, Zhao J, Li J, Liu Y, Luo J, Yuan S, Li B, Li Q, Xu Q, Yu X, Huang H, Li T, Wang C (2020) Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in cd-hyperaccumulator Sedum alfredii. J Hazard Mater 383:121177. https://doi.org/10.1016/j.jhazmat.2019.121177

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16:322–327. https://doi.org/10.1016/j.pbi.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

  • Torquato S (2002) Random heterogenous materials: microstructure and macroscopic properties. Springer, New-York

  • Tsai HH, Schmidt W (2017) One way. Or another? Iron uptake in plants. New Phytol 214:500–505. https://doi.org/10.1111/nph.14477

    Article  CAS  PubMed  Google Scholar 

  • Tsednee M, Yang S-C, Lee D-C, Yeh K-C (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166:839–852. https://doi.org/10.1104/pp.114.241224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • von Wirén N, Marschner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Article  Google Scholar 

  • Vose PB (1982) Iron nutrition in plants: a world overview. J Plant Nutr 5:233–249. https://doi.org/10.1080/01904168209362954

    Article  CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Van Riemsdijk WH (2001) Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ Sci Technol 35:4436–4443. https://doi.org/10.1021/es010085j

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, Broadley MR, White PJ (2003) Applying a solute transfer model to phytoextraction: zinc acquisition by Thlaspi caerulescens. Plant Soil 249:45–56

    Article  CAS  Google Scholar 

  • Widodo BMR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol 186:400–414

    Article  Google Scholar 

  • Zhou J-W, Li Z, Liu M-S, Yu H-M, Wu L-H, Huang F, Luo Y-M, Christie P (2020) Cadmium isotopic fractionation in the soil–plant system during repeated phytoextraction with a cadmium hyperaccumulating plant species. Environ Sci Technol 54:13598–13609. https://doi.org/10.1021/acs.est.0c03142

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Zheng C, Hu YT, Jiang TAO, Liu YU, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esculentum. Plant Cell Environ 34:1055–1064

    Article  CAS  Google Scholar 

  • Zinder B, Furrer G, Stumm W (1986) The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim Cosmochim Acta 50:1861–1869. https://doi.org/10.1016/0016-7037(86)90244-9

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GE (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist 149:53–60.

Download references

Acknowledgements

The authors thank Romain Goudon and Lucas Charrois for carrying out the soil and plant analyses. They are grateful to Dr. Catherine Sirguey for her careful reading of the manuscript and her advice.

Code availability

MATLAB® scripts are available on demand.

Funding

The experimental part of this work was supported by the French National Research Agency (SimTraces project, ANR 2011 CESA 008 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Sterckeman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Miroslav Nikolic.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Values of the model parameters; Range of variation of the parameters used in the global sensitivity analysis; Calculation of \( {f}_{\mathrm{Cd}}^{\mathrm{FeOx}} \) and \( {f}_{\mathrm{Cd}}^{{\mathrm{CaCO}}_3} \); Results of the sequential extractions; Main results of the experiment based on the cultivation of Noccaea caerulescens; Mini-reviews about the rates of organic ligand excretion by roots, the sorption and the degradation of the ligand and of the Fe complex; Figs. S1-S16. (PDF 1124 kb)

ESM 1

(PDF 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterckeman, T., Moyne, C. Could root-excreted iron ligands contribute to cadmium and zinc uptake by the hyperaccumulator Noccaea caerulescens?. Plant Soil 467, 129–153 (2021). https://doi.org/10.1007/s11104-021-05037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05037-1

Keywords

Navigation