Skip to main content
Log in

Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Endophytic fungi colonization is an eco-friendly strategy to respond to environmental stresses and confer tolerance to the host plant. Here, the responses of wheat plant inoculated with an indole acetic acid (IAA) -producing endophytic fungus to drought stress and water recovery were evaluated.

Methods

The inoculation of wheat plants with Alternaria alternata (LQ1230) was conducted to evaluate drought resistance under adequate water, water deficit and water recovery conditions by examining the growth parameters and various physiological indicators of wheat seedlings.

Results

The LQ1230 isolated from Elymus dahuricus Turcz could secrete indole acetic acid (IAA) by both the tryptophan-dependent (319.24 ± 14.88 μg/mL) and independent (40.12 ± 8.59 μg/mL) pathways. LQ1230 inoculation enhanced wheat growth and drought tolerance through regulation of antioxidant enzyme activities and the content of compatible solutes such as soluble sugars and proline. Additionally, LQ1230 inoculated plants demonstrated significantly improved photosynthesis, C and N accumulation of wheat plants, leading to a positive relationship with plant dry biomass under water deficit and re-watering conditions.

Conclusions

We found that the improved wheat plant growth, photosynthesis and nutrient accumulations by the inoculation of Alternaria alternata LQ1230 might be attributed to the reprogramming of wheat plant metabolism, thus enhancing wheat drought tolerance. Inoculation with fungal endophytes such as LQ1230 has the potential to increase crop drought resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aebi H (1984) [13] Catalase in vitro. In: Methods in enzymology, vol 105. Elsevier, pp 121–126

  • Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim AY, Kang SM, Lee IJ (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12:31–38

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in arabidopsis seedlings. Plant J 29:325–332

    Article  CAS  PubMed  Google Scholar 

  • Buyer JS, Zuberer DA, Nichols KA, Franzluebbers AJ (2010) Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant Soil 339:401–412. https://doi.org/10.1007/s11104-010-0592-y

    Article  CAS  Google Scholar 

  • Chen Y, GUO S-D, XU J, CHEN Y-L, LI H-Y, QI X-H, MAO W-J (2010) Studies on exopolysaccharides from a marine endogenetic fungus of the sponge (Alternaria sp.)[J]. Periodical of Ocean University of China 5:004

    CAS  Google Scholar 

  • Chen T, Johnson R, Chen S, Lv H, Zhou J, Li C (2018) Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant Soil:1–18

  • Clay K, Holah J (1999) Fungal endophyte Symbiosis and plant diversity in successional fields. Science 285:1742–1744. https://doi.org/10.1126/science.285.5434.1742

    Article  CAS  PubMed  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  CAS  PubMed  Google Scholar 

  • Dastogeer KMG, Wylie SJ (2017) Plant–Fungi association: role of fungal endophytes in improving plant tolerance to water stress. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 1: fundamental mechanisms, methods and functions. Springer Singapore, Singapore, pp 143–159. https://doi.org/10.1007/978-981-10-5813-4_8

    Chapter  Google Scholar 

  • Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Du X, Ren Y, Wylie SJ (2017) Metabolic responses of endophytic Nicotiana benthamiana plants experiencing water stress. Environ Exp Bot 143:59–71

    Article  CAS  Google Scholar 

  • Devi KA, Pandey G, Rawat A, Sharma GD, Pandey P (2017) The endophytic symbiont—Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L Front Microbiol 8:1897

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable Agriculture. Springer Netherlands, Dordrecht, pp 153–188. https://doi.org/10.1007/978-90-481-2666-8_12

    Chapter  Google Scholar 

  • Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (2006) Short-term responses of soil C and N fractions to tall fescue endophyte infection. Plant Soil 282:153–164. https://doi.org/10.1007/s11104-005-5447-6

    Article  CAS  Google Scholar 

  • Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10:e1048052. https://doi.org/10.1080/15592324.2015.1048052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. https://doi.org/10.1007/s11274-010-0572-7

    Article  Google Scholar 

  • Guler NS, Pehlivan N, Karaoglu SA, Guzel S, Bozdeveci A (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38:132

    Article  CAS  Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • HongBo S, ZongSuo L, MingAn S (2005) Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf B Biointerfaces 45:7–13. https://doi.org/10.1016/j.colsurfb.2005.06.016

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Zhong Y, Li Y, Zheng D, Cheng Z-M (2016) Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f. sp. mali. Genome 59:866–878

    Article  CAS  PubMed  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Shin J-H, Jung H-Y, Lee I-J (2014) Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Sci Hortic 175:167–173

    Article  CAS  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015a) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015b) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, al-Harrasi A, al-Rawahi A, al-Farsi Z, al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276. https://doi.org/10.1111/lam.12855

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Sheng M, Wang C, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258

    Article  CAS  Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Manici L, Kelderer M, Caputo F, Mazzola M (2015) Auxin-mediated relationships between apple plants and root inhabiting fungi: impact on root pathogens and potentialities of growth-promoting populations. Plant Pathol 64:843–851

    Article  CAS  Google Scholar 

  • Meena KK et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2018) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays Symbiosis. https://doi.org/10.1007/s13199-018-0583-y,

  • Mona SA, Hashem A, Abd_Allah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16:1751–1757

    Article  CAS  Google Scholar 

  • Musetti R, Polizzotto R, Vecchione A, Borselli S, Zulini L, D’Ambrosio M, Toppi LS, Pertot I (2007) Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: an ultrastructural study. Micron 38:643–650

    Article  CAS  PubMed  Google Scholar 

  • Ortiz J, Soto J, Almonacid L, Fuentes A, Campos-Vargas R, Arriagada C (2019) Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their effects on Eucalyptus globulus growth promotion. Plant Soil. https://doi.org/10.1007/s11104-019-03946-w

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang X-j, Yu G-h, Jiang L-l, Sun L-l, Zhang S-h, Wei L, Cheng X-g (2015) Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress. J Integr Agric 14:1911–1922

    Article  CAS  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433. https://doi.org/10.1016/j.tplants.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302. https://doi.org/10.1016/j.pbi.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  • Shahabivand S, Parvaneh A, Aliloo AA (2017) Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Saf 145:496–502

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee I-J (2017a) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ 5:e3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J (2017b) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Shukla N, Awasthi R, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166:171–182

    Article  CAS  Google Scholar 

  • Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagnoletti F, Tobar N, Di Pardo AF, Chiocchio V, Lavado R (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32

    Article  Google Scholar 

  • Su Z-Z, Mao LJ, Li N, Feng XX, Yuan ZL, Wang LW, Lin FC, Zhang CL (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8:e61332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Vergara C, Araujo KEC, Urquiaga S, Schultz N, Balieiro FC, Medeiros PS, Santos LA, Xavier GR, Zilli JE (2017) Dark septate endophytic Fungi help tomato to acquire nutrients from ground plant material. Front Microbiol 8:2437. https://doi.org/10.3389/fmicb.2017.02437

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang M-H, Wang X-B, Li T-X, Kong L-Y (2014) Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99:153–158. https://doi.org/10.1016/j.fitote.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Seiler JR, Mei C (2016) A microbial endophyte enhanced growth of switchgrass under two drought cycles improving leaf level physiology and leaf development. Environ Exp Bot 122:100–108

    Article  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3

    Article  CAS  PubMed  Google Scholar 

  • Wu H-H, Zou Y-N, Rahman MM, Ni Q-D, Wu Q-S (2017) Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep 7

  • Yan J, Broughton S, Yang S, Gange A (2015) Do endophytic fungi grow through their hosts systemically? Fungal Ecol 13:53–59

    Article  Google Scholar 

  • Yang B, Ma H-Y, Wang X-M, Jia Y, Hu J, Li X, Dai C-C (2014a) Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Plant Physiol Biochem 82:172–182

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wang X-M, Ma H-Y, Jia Y, Li X, Dai C-C (2014b) Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Plant Growth Regul 73:165–179. https://doi.org/10.1007/s10725-013-9878-4

    Article  CAS  Google Scholar 

  • Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann Bot 83:175–182

    Article  CAS  Google Scholar 

  • Yuan J, Zhou J-Y, Li X, Dai C-C (2016) The primary mechanism of endophytic fungus Gilmaniella sp. AL12 promotion of plant growth and sesquiterpenoid accumulation in Atractylodes lancea Plant Cell, Tissue and Organ Culture (PCTOC) 125:571–584

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens: a review (2008) 6:9. https://doi.org/10.5424/sjar/200806S1-382

  • Zavala-Gonzalez EA, Escudero N, Lopez-Moya F, Aranda-Martinez A, Exposito A, Ricaño-Rodríguez J, Naranjo-Ortiz MA, Ramírez-Lepe M, Lopez-Llorca LV (2015) Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann Appl Biol 166:472–483

    Article  CAS  Google Scholar 

  • Zhou W, Starr JL, Krumm JL, Sword GA (2016) The fungal endophyte Chaetomium globosum negatively affects both above- and belowground herbivores in cotton. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw158

Download references

Acknowledgements

The authors would like to acknowledge the Institute of Grassland Research of CAAS for providing the Elymus dahuricus Turcz seeds and Xuan Xu for helpful comments and revision of the manuscript. This study was financially supported by the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhong Li.

Additional information

Responsible Editor: Matthew G. Bakker.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, X., Ding, J., Lin, W. et al. Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus. Plant Soil 439, 373–391 (2019). https://doi.org/10.1007/s11104-019-04028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04028-7

Keywords

Navigation