Skip to main content
Log in

Plants and endophytes: equal partners in secondary metabolite production?

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Well known plant production systems should be re-evaluated due to findings that the interesting metabolite might actually be produced by microbes intimately associated with the plant, so-called endophytes. Endophytes can be bacteria or fungi and they are characterized usually by the feature that they do not cause any harm to the host. Indeed, in some cases, such as mycorrhizal fungi or other growth promoting endophytes, they can be beneficial for the plant. Here some examples are reviewed where the host plant and/or endophyte metabolism can be induced by the other partner. Also, partial or complete biosynthesis pathways for plant secondary metabolites can be attributed to such endophytes. In other cases the host plant is able to metabolize substances from fungal origin. The question of the natural role of such metabolic changes for the endophyte will be briefly touched. Finally, the consequences for the use of plant cultures for secondary metabolite production is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahão MRE, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52:367–372

    Article  Google Scholar 

  • Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Agusta A, Wulansari D, Praptiwi Nurkanto A, Fathoni A (2014) Biotransformation of protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from yellow moonsheed plant (Archangelisia flava (L.) Merr.). Proced Chem 13:38–43

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2013) Fungal endophytes—secret producers of bioactive plant metabolites. Pharmazie 68:499–505

    CAS  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 26:15649–15654

    Article  Google Scholar 

  • Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    Article  CAS  PubMed  Google Scholar 

  • Bicas JL, Dionisio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531

    Article  CAS  PubMed  Google Scholar 

  • Borges KB, Borges WdS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac- thioridazine biotransformation by some endophytic fungi. J Pharm Biomed Anal 46:945–952

    Article  CAS  PubMed  Google Scholar 

  • Borges KB, Borges WdS, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 20:385–397

    Article  CAS  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    Article  CAS  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreño MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317

    Article  CAS  PubMed  Google Scholar 

  • Georgiev M, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnology. Trends Biotechnol 30:528–537

    Article  CAS  PubMed  Google Scholar 

  • Hansson D, Wubshet S, Olson Å, Karlsson M, Staerk D, Broberg A (2014) Secondary metabolite comparison of the species within the Heterobasidion annosum s.l. complex. Phytochemistry 108:243–251

    Article  CAS  PubMed  Google Scholar 

  • Hwang K-S, Kim HU, Charusanti P, Palsson BØ, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32:255–268

    Article  CAS  PubMed  Google Scholar 

  • Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids, and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714

    Article  Google Scholar 

  • Jäschke D, Dugassa-Gobena D, Karlovsky P, Vidal S, Ludwig-Müller J (2010) Suppression of clubroot development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathol 59:100–111

    Article  Google Scholar 

  • Joost RE (1995) Acremonium in fescue and ryegrass: boon or bane? A review. J Anim Sci 73:881–888

    CAS  PubMed  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Article  CAS  PubMed  Google Scholar 

  • Lahlali R, Peng G, Gossen BD, McGregor L, Yu FQ, Hynes RK, Hwang SF, McDonald MR, Boyetchko SM (2013) Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology 103:245–254

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Leifert C, Cassells AC (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol Plant 37:133–138

    Article  Google Scholar 

  • Liu CH, Zou WX, Lu H, Tan RX (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88:277–282

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Jahn L, Lippert A, Püschel J, Walter A (2014) Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 32:1168–1179

    Article  PubMed  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Proc Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma Shaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329

    Article  PubMed  Google Scholar 

  • Narisawa K, Ohki T, Hashiba T (2000) Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 49:141–146

    Article  Google Scholar 

  • Nitzsche A, Tokalov SV, Gutzeit HO, Ludwig-Müller J (2004) Chemical and biological characterization of cinnamic acid derivatives from cell cultures of lavender (Lavandula officinalis) induced by stress and jasmonic acid. J Agric Food Chem 52:2915–2923

    Article  CAS  PubMed  Google Scholar 

  • Onrubia M, Moyano E, Bonfill M, Cusidó RM, Goossens A, Palazón J (2011) Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J Plant Physiol 170:211–219

    Article  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  • Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009

    Article  CAS  PubMed  Google Scholar 

  • Prado S, Buisson D, Ndoye I, Vallet M, Nay B (2013) One-step enantioselective synthesis of (4S)-isosclerone through biotransformation of juglone by an endophytic fungus. Tetrahedron Lett 54:1189–1191

    Article  CAS  Google Scholar 

  • Prana TK, Srikandace J, Sumitro E, Wulandari D (2010) The potency of endophytic fungi of turmeric (Curcuma longa L.) in biotransformation of curcumic compounds in various media. Res J Microbiol 5:1189–1198

    Article  CAS  Google Scholar 

  • Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amnaa T, Ahmeda B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  • Qawasmeh A, Obied HK, Raman A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J Agric Food Chem 60:3381–3388

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93:2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Saunders M, Kohn LM (2008) Host-synthesized secondary compounds influence the in vitro interactions between fungal endophytes of maize. Appl Env Microbiol 74:136–142

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Agusta A, Ohashi K, Maehara S, Simanjuntak P (2005) Biooxidation of (+)- catechin and (−)- epicatechin into 3,4-dihydroxyflavan derivatives by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:866–867

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Hess WM (1997) Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity. Chem Biol 4:529–536

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Stierle A, Stierle D, Hess WM (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 47:71–80

    Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiol 142:435–440

    Article  CAS  Google Scholar 

  • Strobel GA, Li JY, Sugawara F, Koshino H, Harper J, Hess WM (1999) Oocydin A, a chlorinated macrocyclic lactone with potent antioomycete activity from Serratia marcescens. Microbiol 145:3557–3564

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Tan R, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Amand S, Buisson D, Kunz C, Hachette F, Dupont J, Nay B, Prado S (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host- plant metabolome for its own benefit. Phytochemistry 108:95–101

    Article  CAS  PubMed  Google Scholar 

  • Trapp MA, Kai M, Mithöfer A, Rodrigues-Filho E (2015) Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 110:72–82

    Article  CAS  PubMed  Google Scholar 

  • Tuntiwachwuttikul P, Taechowisan T, Wanbanjob A, Thadaniti S, Taylor WC, Lansai A-D (2008) Secondary metabolites from Streptomyces sp. SUC1. Tetrahedron 64:7583–7586

    Article  CAS  Google Scholar 

  • Verma VC, Gond SK, Mishra A, Kumar A, Kharwar RN, Gange AC (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity and anti-microbial activity. Microbial Ecol 57:749–756

    Article  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Kalra A (2014) Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tiss Org Cult 118:257–268

    Article  CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbial Res 165:437–449

    Article  CAS  Google Scholar 

  • Zhang J, Zhang L, Wang X, Qiu D, Sun D, Gu J, Fang Q (1998) Microbial transformation of 10-deacetyl-7-epitaxol and 1β-hydroxybaccatin I by fungi from the inner bark of Taxus yunnanensis. J Nat Prod 61:497–500

    Article  CAS  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB, Matthew C (2011) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78

    Article  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zikmundová M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Env Microbiol 68:4863–4870

    Article  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory on secondary metabolites is funded by the European Union, The German Ministry for Education and Science and the State of Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Ludwig-Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig-Müller, J. Plants and endophytes: equal partners in secondary metabolite production?. Biotechnol Lett 37, 1325–1334 (2015). https://doi.org/10.1007/s10529-015-1814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1814-4

Keywords

Navigation