Skip to main content
Log in

Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The main difficulty in the use of 3D root architecture models is correct parameterization. We evaluated distributions of the root traits inter-branch distance, branching angle and axial root trajectories from contrasting experimental systems to improve model parameterization.

Methods

We analyzed 2D root images of different wheat varieties (Triticum aestivum) from three different sources using automatic root tracking. Model input parameters and common parameter patterns were identified from extracted root system coordinates. Simulation studies were used to (1) link observed axial root trajectories with model input parameters (2) evaluate errors due to the 2D (versus 3D) nature of image sources and (3) investigate the effect of model parameter distributions on root foraging performance.

Results

Distributions of inter-branch distances were approximated with lognormal functions. Branching angles showed mean values <90°. Gravitropism and tortuosity parameters were quantified in relation to downwards reorientation and segment angles of root axes. Root system projection in 2D increased the variance of branching angles. Root foraging performance was very sensitive to parameter distribution and variance.

Conclusions

2D image analysis can systematically and efficiently analyze root system architectures and parameterize 3D root architecture models. Effects of root system projection (2D from 3D) and deflection (at rhizotron face) on size and distribution of particular parameters are potentially significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

β:

Root segment angle to the horizontal

∆β:

Reorientation angle of an individual root segment

De :

Diffusion coefficient of a solute in soil

ibd:

Inter-branch distance

IRC:

Inter-root competition

μ:

Mean value

σ:

Standard deviation of the random deflection angle (tortuosity)

sg:

Sensitivity to gravitropism

std:

Standard deviation

θ:

Branching angle in the vertical plane

References

  • Abadia-Fenoll F, Casero P, Lloret P, Vidal M (1986) Development of lateral primordia in decapitated adventitious roots of Allium cepa. Ann Bot 58:103–107

    Article  Google Scholar 

  • Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM (2017) Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large scale genetic studies. GigaScience 6:1–7

    Article  Google Scholar 

  • Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66:2283–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T, Mooney SJ, Bennett MJ, Dinneny JR (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci USA 111:9319–9324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow P, Adam J (1988) The position and growth of lateral roots on cultured root axes of tomato, Lycopersicon esculentum (Solanaceae). Plant Syst Evol 158:141–154

    Article  Google Scholar 

  • Bauke SL, Landl M, Koch M, Hofmann D, Nagel KA, Siebers N, Schnepf A, Amelung W (2017) Macropore effects on phosphorus acquisition by wheat roots – a rhizotron study. Plant Soil 416:67–82

    Article  CAS  Google Scholar 

  • Bingham IJ, Wu L (2011) Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis. Eur J Agron 34:181–189

    Article  Google Scholar 

  • Bouma TJ, Yanai RD, Elkin AD, Hartmond U, Flores-Alva DE, Eissenstat DM (2001) Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges. New Phytol 150:685–695

    Article  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) 3-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausnitzer V, Hopmans J (1994) Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164:299–314

    Article  CAS  Google Scholar 

  • Delory BM, Baudson C, Brostaux Y, Lobet G, Du Jardin P, Pagès L, Delaplace P (2016) archiDART: an R package for the automated computation of plant root architectural traits. Plant Soil 398:351–365

    Article  CAS  Google Scholar 

  • Diggle AJ (1988) ROOTMAP - a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105:169–178

    Article  Google Scholar 

  • Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: II-modelling of water transfer int he soil root-system with explicit accoutn of flow within the root system - comparison with experiments. Plant Soil 283:99–117

    Article  CAS  Google Scholar 

  • Draye X (2002) Consequences of root growth kinetics and vascular structure on the distribution of lateral roots. Plant Cell Environ 25:1463–1474

    Article  Google Scholar 

  • Dunbabin V, Diggle AJ, Rengel Z, van Hugten R (2002) Modelling the interactions between water and nutrient uptake and root growth. Plant Soil 239:19–38

    Article  CAS  Google Scholar 

  • Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124

    Article  CAS  Google Scholar 

  • Fitter A, Stickland T, Harvey M, Wilson G (1991) Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Forde BG (2009) Is it good noise? The role of developmental instability in the shaping of a root system. J Exp Bot 60:3989–4002

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Pan WL, Koenig RT (1998) Integrated root system age in relation to plant nutrient uptake activity. Agron J 90:505–510

    Article  CAS  Google Scholar 

  • Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves CE, Gregory PJ, Bengough AG (2009) Measuring root traits in barley (Hordeum vulgare ssp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil 316:285–297

    Article  CAS  Google Scholar 

  • Ito K, Tanakamaru K, Morita S, Abe J, Inanaga S (2006) Lateral root development, including responses to soil drying, of maize (Zea Mays) and wheat (Triticum aestivum) seminal roots. Physiol Plant 127:260–267

    Article  CAS  Google Scholar 

  • Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1079

    Article  Google Scholar 

  • Judd LA, Jackson BE, Fonteno WC (2015) Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 4:369–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuchenbuch R, Ingram K (2002) Image analysis for non-destructive and non-invasive quantification of root growth and soilw ater content in rhizotrons. J Plant Nutr Soil Sci 165:573–581

    Article  CAS  Google Scholar 

  • Kuijken RC, van Eeuwijk FA, Marcelis LF, Bouwmeester HJ (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66:5389–5401

    Article  CAS  PubMed  Google Scholar 

  • Kutschera L (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG-Verlag, Frankfurt/Main, pp 124, 574

  • Kutschera L, Lichtenegger E, Sobotik M (2009) Wurzelatlas der Kulturpflanzen gemäßigter Gebiete: mit Arten des Feldgemüsebaues. DLG-Verlag Frankfurt/Main, pp 222, 226–227

  • Landl M, Huber K, Schnepf A, Vanderborght J, Javaux M, Bengough AG, Vereecken H (2017) A new model for root growth in soil with macropores. Plant Soil 415:99–116

    Article  CAS  Google Scholar 

  • Le Bot J, Serra V, Fabre J, Draye X, Adamowicz S, Pagès L (2010) DART: a software to analyse root system architecture and development from captured images. Plant Soil 326:261–273

    Article  Google Scholar 

  • Leitner D, Felderer B, Vontobel P, Schnepf A (2014) Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol 164:24–35

    Article  CAS  PubMed  Google Scholar 

  • Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-systems. Plant Soil 332:177–192

    Article  CAS  Google Scholar 

  • Liang J, Zhang J, Wong M (1996) Effects of air-filled soil porosity and aeration on the initiation and growth of secondary roots of maize (Zea Mays). Plant Soil 186:245–254

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP, Nielsen KL, Davis RD, Jablokow AG (1997) SimRoot: modelling and visualization of root systems. Plant Soil 188:139–151

    Article  CAS  Google Scholar 

  • Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ, Pridmore T (2012) RooTrak: automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiol 158:561–569

    Article  CAS  PubMed  Google Scholar 

  • Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ (2012) Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 352:1–22

    Article  CAS  Google Scholar 

  • Nagel K, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer J, Faget M, Bloßfeld S, Ernst M, Dimaki C, Kastenholz B, Kleinert A, Galinski A, Scharr H, Fiorani F, Schurr U (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enablign simultaneous measruements of root and shoot growth for pkants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904

    Article  Google Scholar 

  • Nagel KA, Bonnett D, Furbank R, Walter A, Schurr U, Watt M (2015) Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping. J Exp Bot 66:5441–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamoto T (1994) Plagiogravitropism of maize roots. Plant Soil 165:327–332

    Article  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Univ of California Press, p 342

  • Pagès L (2011) Links between root developmental traits and foraging performance. Plant Cell Environ 34:1749–1760

    Article  PubMed  Google Scholar 

  • Pagès L, Pellerin S (1994) Evaluation of parameters describing the root system architecture of field grown maize plants (Zea mays L.), II. Plant Soil 164:169–176

    Article  Google Scholar 

  • Pagès L, Picon-Cochard C (2014) Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching? New Phytol 204:149–158

    Article  PubMed  Google Scholar 

  • Pagès L, Vercambre G, Drouet J-L, Lecompte F, Collet C, Le Bot J (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119

    Article  Google Scholar 

  • Pellerin S, Pagès L (1994) Evaluation of parameters describing the root system architecture of field grown maize plants (Zea mays L.), I. Plant Soil 164:155–167

    Article  CAS  Google Scholar 

  • Pellerin S, Tabourel F (1995) Length of the apical unbranched zone of maize axile roots: its relationship to root elongation rate. Environ Exp Bot 35:193–200

    Article  Google Scholar 

  • Pohlmeier A, Javaux M, Vereecken H, Haber-Pohlmeier S (2013) Magnetic resonance imaging techniques for visualization of root growth and root water uptake processes. In: Anderson SH, Hopmans JW (eds) Soil–water–root processes: advances in tomography and imaging, pp 137–156. Publ, SSSA Spec, p 61

    Google Scholar 

  • Popova L, van Dusschoten D, Nagel KA, Fiorani F, Mazzolai B (2016) Plant root tortuosity: an indicator of root path formation in soil with different composition and density. Ann Bot 118:685–698

    Article  PubMed Central  Google Scholar 

  • Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166:590–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ, Matsubara S, Märtin LL, Merchant A, Metzner R (2011) Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol 38:968–983

    Article  CAS  Google Scholar 

  • Rich S, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64:1193–1208

    Article  CAS  PubMed  Google Scholar 

  • Roose T, Schnepf A (2008) Mathematical models of plant–soil interaction. Philos Trans R Soc A 366:4597–4611

    Article  Google Scholar 

  • Schenk M, Barber S (1979) Phosphate uptake by corn as affected by soil characteristics and root morphology. Soil Sci Soc Am J 43:880–883

    Article  CAS  Google Scholar 

  • Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc B 367:1441–1452

    Article  CAS  Google Scholar 

  • Tardieu F, Pellerin S (1990) Trajectory of the nodal roots of maize in fields with low mechanical constraints. Plant Soil 124:39–45

    Article  Google Scholar 

  • Tracy SR, Black CR, Roberts JA, Sturrock C, Mairhofer S, Craigon J, Mooney SJ (2012) Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann Bot 110:511–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Tracy SR, Roberts JA, Black CR, McNeill A, Davidson R, Mooney SJ (2010) The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. J Exp Bot 61:311–313

    Article  CAS  PubMed  Google Scholar 

  • Tricot F, Crozat Y, Pellerin S (1997) Root system growth and nodule establishment on pea (Pisum sativum L.) J Exp Bot 48:1935–1941

    Article  CAS  Google Scholar 

  • Volder A, Smart DR, Bloom AJ, Eissenstat DM (2005) Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness. New Phytol 165:493–502

    Article  PubMed  Google Scholar 

  • Weaver JE, Jean FC, Crist JW (1922) Development and activities of roots of crop plants: a study in crop ecology. Agronomy & Horticulture -- Faculty Publications, paper 511

  • Weaver JE, Kramer J, Reed M (1924) Development of root and shoot of winter wheat under field environment. Ecology 5:26–50

    Article  Google Scholar 

  • Wenzel WW, Wieshammer G, Fitz WJ, Puschenreiter M (2001) Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant Soil 237:37–45

    Article  CAS  Google Scholar 

  • Wu J, Pagès L, Wu Q, Yang B, Guo Y (2015) Three-dimensional architecture of axile roots of field-grown maize. Plant Soil 387:363–377

    Article  CAS  Google Scholar 

  • Wu L, McGechan M, McRoberts N, Baddeley J, Watson C (2007) SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description. Ecol Model 200:343–359

    Article  Google Scholar 

  • Wu L, McGechan M, Watson C, Baddeley J (2005) Developing existing plant root system architecture models to meet future agricultural challenges. Adv Agron 85:181–219

    Article  Google Scholar 

  • Yu P, Gutjahr C, Li C, Hochholdinger F (2016) Genetic control of lateral root formation in cereals. Trends Plant Sci 21:951–961

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding by German Research Foundation within the Research Unit DFG PAK 888 is gratefully acknowledged. The James Hutton Institute receives funding from the Scottish Government. We also thank Klaas Metselaar from the Department of Environmental Sciences at Wageningen University, Netherlands, for providing high-resolution scans of wheat root images from the Root Atlas and the authors of Atkinson et al. (2017) for publicly sharing their image datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Landl.

Additional information

Responsible Editor: W Richard Whalley

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, M., Schnepf, A., Vanderborght, J. et al. Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models. Plant Soil 425, 457–477 (2018). https://doi.org/10.1007/s11104-018-3595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3595-8

Keywords

Navigation