Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519. https://doi.org/10.1073/pnas.0801925105
CAS
Article
PubMed
PubMed Central
Google Scholar
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. https://doi.org/10.1016/j.soilbio.2008.12.022
CAS
Article
Google Scholar
Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Deanta RC, Couteaux M, Escudero A, Gallardo A, Kratz W, Madeira M, Malkonen E, McClaugherty C, Meentemeyer V, Munoz F, Piussi P, Remacle J, Desanto AV (1993) Litter mass-loss rates in pine forests of europe and eastern united-states - some relationships with climate and litter quality. Biogeochemistry 20:127–159. https://doi.org/10.1007/bf00000785
Article
Google Scholar
Britson A, Wardrop D, Drohan P (2016) Plant community composition as a driver of decomposition dynamics in riparian wetlands. Wetl Ecol Manag 24:335–346
Article
Google Scholar
Cleveland CC, Reed SC, Keller AB, Nemergut DR, O'Neill SP, Ostertag R, Vitousek PM (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. https://doi.org/10.1007/s00442-013-2758-9
Article
PubMed
Google Scholar
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x
Article
PubMed
Google Scholar
Dorland E, Bobbink R, Messelink JH, Verhoeven JTA (2003) Soil ammonium accumulation after sod cutting hampers the restoration of degraded wet heathlands. J Appl Ecol 40:804–814. https://doi.org/10.1046/j.1365-2664.2003.00845.x
CAS
Article
Google Scholar
Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84. https://doi.org/10.1007/s11273-008-9119-1
Article
Google Scholar
Fenoy E, Casas JJ, Diaz-Lopez M, Rubio J, Guil-Guerrero JL, Moyano-Lopez FJ (2016) Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw169
Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630. https://doi.org/10.1111/j.1365-2745.2011.01943.x
Article
Google Scholar
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765. https://doi.org/10.1046/j.1365-2486.2000.00349.x
Article
Google Scholar
Graziani DJ, Day FP (2015) Thresholds of change in decomposition rate along a dune/swale transect on a Virginia Barrier Island. J Coast Res 31:148–154. https://doi.org/10.2112/jcoastres-d-13-00102.1
Article
Google Scholar
Hasselquist EM, Nilsson C, Hjalten J, Jorgensen D, Lind L, Polvi LE (2015) Time for recovery of riparian plants in restored northern Swedish streams: a chronosequence study. Ecol Appl 25:1373–1389. https://doi.org/10.1890/14-1102.1
Article
PubMed
Google Scholar
Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Ann Rev Ecol Evol Syst
Hefting MM, Clement JC, Bienkowski P, Dowrick D, Guenat C, Butturini A, Topa S, Pinay G, Verhoeven JTA (2005) The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol Eng 24:465–482. https://doi.org/10.1016/j.ecoleng.2005.01.003
Article
Google Scholar
Helfield JM, Capon SJ, Nilsson C, Jansson R, Palm D (2007) Restoration of rivers used for timber floating: effects on riparian plant diversity. Ecol Appl 17:840–851
Article
PubMed
Google Scholar
Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038. https://doi.org/10.2307/3071911
Article
Google Scholar
Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821. https://doi.org/10.1038/nclimate1911
Article
Google Scholar
Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. Biom J 50:346–363
Article
PubMed
Google Scholar
IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattne G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis, Cambridge, United Kingdom and New York, USA
Johnston CA (1991) Sediment and nutrient retention by fresh-water wetlands—effects on surface-water quality. Crit Rev Environ Control 21:491–565
Article
Google Scholar
Keddy PA (2000) Wetland ecology; principles and conservation. Cambridge University Press, Cambridge
Google Scholar
Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075. https://doi.org/10.1111/2041-210x.12097
Article
Google Scholar
Langhans SD, Tockner K (2006) The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509. https://doi.org/10.1007/s00442-005-0282-2
Article
PubMed
Google Scholar
Langhans SD, Tiegs SD, Gessner MO, Tockner K (2008) Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquat Sci 70:337–346. https://doi.org/10.1007/s00027-008-8062-9
Article
Google Scholar
Mace OG, Steinauer K, Jousset A, Eisenhauer N, Scheu S (2016) Flood-induced changes in soil microbial functions as modified by plant diversity. Plos One 11. https://doi.org/10.1371/journal.pone.0166349
Makkonen M, Berg MP, Handa IT, Haettenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041. https://doi.org/10.1111/j.1461-0248.2012.01826.x
Article
PubMed
Google Scholar
Moore PD (1990) Soils and Ecology: Temperate wetlands. In: Williams W (ed) Wetlands: a threatened landscape. Blackwell Publishers, Oxford
Google Scholar
Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963. https://doi.org/10.1007/s10021-007-9064-5
Article
Google Scholar
Nilsson C, Jansson R, Zinko U (1997) Long-term responses of river-margin vegetation to water-level regulation. Science 276:798–800. https://doi.org/10.1126/science.276.5313.798
CAS
Article
PubMed
Google Scholar
Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world's large river systems. Science 308:405–408. https://doi.org/10.1126/science.1107887
CAS
Article
PubMed
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team. RC (2016) nlme: Linear and nonlinear mixed effects models. 3.1–128 edn
R Core Team (2016) R: a language and environment for statistical computing. 3.2.5 edn. R Foundation for Statistical Computing, Vienna
Google Scholar
Ström L, Jansson R, Nilsson C, Johansson ME, Xiong SJ (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Glob Chang Biol 17:254–267. https://doi.org/10.1111/j.1365-2486.2010.02230.x
Article
Google Scholar
Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley
Google Scholar
Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, CamirT C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804. https://doi.org/10.1139/x01-117
Article
Google Scholar
Veen GF, Freschet GT, Ordonez A, Wardle DA (2015) Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124:187–195. https://doi.org/10.1111/oik.01374
Article
Google Scholar
Vendrami JL, Jurinitz CF, Castanho CT, Lorenzo L, de Oliveira AA (2012) Litterfall and leaf decomposition in forest fragments under different successional phases on the Atlantic Plateau of the state of Sao Paulo, Brazil. Biota Neotropica 12:136–143
Article
Google Scholar
Wagner D, Eisenhauer N, Cesarz S (2015) Plant species richness does not attenuate responses of soil microbial and nematode communities to a flood event. Soil Biol Biochem 89:135–149. https://doi.org/10.1016/j.soilbio.2015.07.001
CAS
Article
Google Scholar
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. https://doi.org/10.1126/science.1094875
CAS
Article
PubMed
Google Scholar
Webster JR, Benfield EF (1986) Vascular plant breakdown in fresh-water ecosystems. Annu Rev Ecol Syst 17:567–594. https://doi.org/10.1146/annurev.es.17.110186.003031
Article
Google Scholar
Whittinghill KA, Finlay JC, Hobbie SE (2014) Bioavailability of dissolved organic carbon across a hillslope chronosequence in the Kuparuk River region, Alaska. Soil Biol Biochem 79:25–33. https://doi.org/10.1016/j.soilbio.2014.08.020
CAS
Article
Google Scholar
Wright AJ, de Kroon H, Visser EJW, Buchmann T, Ebeling A, Eisenhauer N, Fischer C, Hildebrandt A, Ravenek J, Roscher C, Weigelt A, Weisser W, Voesenek L, Mommer L (2017) Plants are less negatively affected by flooding when growing in species-rich plant communities. New Phytol 213:944–955. https://doi.org/10.1111/nph.14185
Article
Google Scholar
Xiong SJ, Nilsson C (1997) Dynamics of leaf litter accumulation and it effects on riparian vegetation: A review. Bot Rev 63:240–264. https://doi.org/10.1007/bf02857951
Article
Google Scholar
Xiong SJ, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994. https://doi.org/10.1046/j.1365-2745.1999.00414.x
Article
Google Scholar