Skip to main content
Log in

Effects of a bacterial consortium from acid mine drainage on cadmium phytoextraction and indigenous soil microbial community

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

A major concern in developing microbially-assisted phytoextraction (MAP) is that the effects of introduced microbes on indigenous soil microbial community are profound and irreversible. To date, however, the microbial properties of soils subjected to MAP remain poorly understood. Therefore, we explored the effects of inoculation with a bacterial consortium enriched from acid mine drainage on not only the cadmium (Cd) phytoextraction efficiency of Averrhoa carambola but also the microbial properties of the Cd-contaminated soil.

Methods

We conducted a field experiment and characterized the microbial community in the contaminated soil using next generation sequencing technology (Illumina MiSeq).

Results

The bacterial inoculation increased the Cd concentration in A. carambola shoot tissues by 20%–65%, leading to a relatively high Cd removal efficiency (4.63% annually). Meanwhile, there were no significant differences between the treatments in soil bacterial diversity and community composition one year after the initiation of the bacterial inoculation treatment. The most abundant genera of the introduced bacteria were found to either disappear from, or be present in similar relative abundance, in the soils of the different treatments, except Sulfobacillus.

Conclusions

Collectively, our results provide evidence that MAP could be practiced with minor effects on indigenous soil microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chesworth W (2008) Encyclopedia of soil science. Springer, Dordrecht

    Book  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  CAS  PubMed  Google Scholar 

  • Ding CY, Zheng Y, Ren XM, Chen ZJ (2016) Changes in bacterial community composition during the remediation of Cd-contaminated soils of bioenergy crops. Acta Sci Circumst 36:3009–3016

    CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  CAS  PubMed  Google Scholar 

  • Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:906–1912

    Article  Google Scholar 

  • Karavaiko GI, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM (2005) Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. Nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55:941–947

    Article  CAS  PubMed  Google Scholar 

  • Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol 74:5211–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  Google Scholar 

  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E (2014) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res 21:6845–6858

    Article  CAS  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  PubMed  Google Scholar 

  • Li JT, Liao B, Dai ZY, Zhu R, Shu WS (2009) Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Li JT, Baker AJM, Ye ZH, Wang HB, Shu WS (2012) Phytoextraction of Cd-contaminated soils: current status and future challenges. Crit Rev Environ Sci Technol 42:2113–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Shi J, Chen X, Yang J, Chen Y, Zhao Y, Hu T (2010) Effects of lead upon the actions of sulfate-reducing bacteria in the rice rhizosphere. Soil Biol Biochem 42:1038–1044

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu JS, Xie XH, Xiao SM, Wang XM, Zhao WJ, Tian ZL (2007) Isolation of Leptospirillum ferriphilum by single-layered solid medium. J Cent S Univ Technol 14:467–473

    Article  CAS  Google Scholar 

  • Liu YR, Wang JJ, Zheng YM, Zhang LM, He JZ (2014) Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol 68:575–583

    Article  CAS  PubMed  Google Scholar 

  • Lu RK (2000) Analytical methods of soil and agricultural chemistry. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Marhual NP, Pradhan N, Kar RN, Sukla LB, Mishra BK (2008) Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. Bioresour Technol 99:8331–8336

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metal and micronutrientsdfood safety issues. Field Crop Res 60:143–163

    Article  Google Scholar 

  • Phieler R, Merten D, Roth M, Büchel G, Kothe E (2015) Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environ Sci Pollut Res 22:19408–19416

    Article  CAS  Google Scholar 

  • Prapagdee B, Khonsue N (2015) Bacterial-assisted cadmium phytoremediation by Ocimum gratissimum L. in polluted agricultural soil: a field trial experiment. Int J Environ Sci Technol 12:3843–3852

    Article  CAS  Google Scholar 

  • Robinson BH, Anderson CWN, Dickinson NM (2015) Phytoextraction: where’s the action? J Geochem Explor 151:34–40

    Article  CAS  Google Scholar 

  • Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149:401–405

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and harvesting procedure for securing high cell yields. J Bacteriol 77:642–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Xiao T, Ning Z, Xiao E, Sun W (2015) Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl Microbiol Biotechnol 99:2911–2922

    Article  CAS  PubMed  Google Scholar 

  • Teixeira C, Almeida CMR, Nunes da Silva M, Bordalo AA, Mucha AP (2014) Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Sci Total Environ 493:757–765

    Article  CAS  PubMed  Google Scholar 

  • US EPA (1996) Method 3052: microwave assisted acid digestion of siliceous and organically based matrice. US EPA, Washington, DC

    Google Scholar 

  • Wang FY, Lin XG, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007a) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens - a field case. Environ Pollut 147:248–255

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007b) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1992a) Cadmium. Environmental health criteria, vol. 134. WHO, Geneva

  • WHO (1992b) Cadmium─environmental aspects. Environmental health criteria, vol. 135. WHO, Geneva

  • Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184:812–818

    Article  CAS  PubMed  Google Scholar 

  • Xu BB (2012) Bioleaching of heavy metals from contaminated soils using microbes from acid mine drainage. M.S. Dissertation, Sun Yat-sen University

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Alan Baker of the University of Melbourne for his insightful comments that have helped to improve the quality of the manuscript. This work was funded by the National Natural Science Foundation of China (Nos. 31100372 and 41471257), the Pearl River Nova Program of Guangzhou (No. 2014 J2200100), the Fok Ying Tong Education Foundation (No. 142025), the Guangdong Provincial Natural Science Foundation (No. 10451027501005629), and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110171120042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-sheng Shu.

Additional information

Responsible Editor: Fangjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jt., Liang, Zw., Jia, P. et al. Effects of a bacterial consortium from acid mine drainage on cadmium phytoextraction and indigenous soil microbial community. Plant Soil 415, 347–358 (2017). https://doi.org/10.1007/s11104-016-3170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3170-0

Keywords

Navigation