Skip to main content

Advertisement

Log in

Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plants affect phosphorus (P) cycling through uptake and the mobilization of P from several soil pools into soil solution. The effects of seven cover crop species – three legumes (variable morphology), three cereals (variable domestication degree), one mustard (non-mycorrhizal) – on P cycling were compared in a greenhouse experiment.

Methods

Monocultures and legume-cereal mixtures were grown in an artificial plant growth substrate across three P input treatments (low P, manure, mineral fertilizer) to quantify changes in plant nutrients in aboveground and belowground biomass and properties of the plant growth substrate (pH, organic acids, enzyme activity, P).

Results

Legumes had the highest biomass, P uptake, and P mobilization potential (lower pH, higher organic acids and phosphatase activity) but cereals and mixtures mobilized more P than legumes. Biomass allocation to roots varied among species, with no trade-off between allocation to roots and P mobilization potential. Cereals had higher biomass, P uptake and N concentration in mixtures, whereas legumes had a mixed response in mixtures. Phosphorus concentration in the plant growth substrate affected plant growth and nutrient uptake but not P mobilization potential, with few differences between manure and mineral fertilizer.

Conclusions

Despite smaller effects on rhizosphere properties compared to legumes, cereals and mixtures had a greater impact on soil P and should affect P cycling more strongly when used as cover crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alamgir M, McNeill A, Tang C, Marschner P (2012) Changes in soil P pools during legume residue decomposition. Soil Biol Biochem 49:70–77. doi:10.1016/j.soilbio.2012.01.031

    Article  CAS  Google Scholar 

  • Bodner G, Leitner D, Nakhforoosh A, Sobotik M, Moder K, Kaul H-P (2013) A statistical approach to root system classification. Front Plant Sci 4:1–15. doi:10.3389/fpls.2013.00292

    Article  Google Scholar 

  • Brennan EB, Boyd NS, Smith RF (2013) Winter cover crop seeding rate and variety effects during eight years of organic vegetables: III. Cover crop residue quality and nitrogen mineralization. Agron J 105:171–182. doi:10.2134/agronj2012.0258

    Article  CAS  Google Scholar 

  • Brink GE, Pederson GA, Sistani KR, Fairbrother TE (2001) Uptake of selected nutrients by temperate grasses and legumes. Agron J 93:887–890

    Article  CAS  Google Scholar 

  • Cavigelli MA, Thien SJ (2003) Phosphorus bioavailability following incorporation of green manure crops. Soil Sci Soc Am J 67:1186–1194

    Article  CAS  Google Scholar 

  • Cawthray GR (2003) An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A 1011:233–240. doi:10.1016/s0021-9673(03)01129-4

    Article  CAS  PubMed  Google Scholar 

  • Damon PM, Bowden B, Rose T, Rengel Z (2014) Crop residue contributions to phosphorus pools in agricultural soils: a review. Soil Biol Biochem 74:127–137. doi:10.1016/j.soilbio.2014.03.003

    Article  CAS  Google Scholar 

  • Dodor DE, Tabatabai MA (2003) Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci 166:7–13

    Article  CAS  Google Scholar 

  • Eichler-Loebermann B, Koehne S, Kowalski B, Schnug E (2008) Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. J Plant Nutr 31:659–676. doi:10.1080/01904160801926517

    Article  CAS  Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in Soils. In: Tiessen H (ed) Phosphorus in the Global Environment. Wiley, Chichester

    Google Scholar 

  • Frossard E, Skrabal P, Sinaj S, Bangerter F, Traore O (2002) Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr Cycl Agroecosyst 62:103–113. doi:10.1023/a:1015596526088

    Article  CAS  Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397. doi:10.1016/j.soilbio.2011.03.017

    Article  CAS  Google Scholar 

  • Grinsted MJ, Hedley MJ, White RE, Nye PH (1982) Plant-induced changes in the rhizosphere of rape (Brassica napus Var. Emerald) seedlings. I. pH change and the increase in P concentration in the soil solution. New Phytol 91:19–29. doi:10.1111/j.1469-8137.1982.tb03289.x

    Article  CAS  Google Scholar 

  • Hartz TK, Mitchell JP, Giannini C (2000) Nitrogen and carbon mineralization dynamics of manures and composts. Hortscience 35:209–212

    Google Scholar 

  • Hasbullah, Marschner P, McNeill A (2011) Legume residue influence arbuscular mycorrhizal colonisation and P uptake by wheat. Biol Fertil Soils 47:701–707. doi:10.1007/s00374-011-0581-1

    Article  Google Scholar 

  • Horst WJ, Kamh M, Jibrin JM, Chude VO (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    Article  CAS  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–U334. doi:10.1038/Nature07028

    Article  CAS  PubMed  Google Scholar 

  • Jemo M, Abaidoo RC, Nolte C, Tchienkoua M, Sanginga N, Horst WJ (2006) Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon. Plant Soil 284:385–397. doi:10.1007/S11104-006-0052-X

    Article  CAS  Google Scholar 

  • Kamh M, Horst WJ, Amer F, Mostafa H, Maier P (1999) Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211:19–27

    Article  CAS  Google Scholar 

  • Kamh M, Abdou M, Chude V, Wiesler F, Horst WJ (2002) Mobilization of phosphorus contributes to positive rotational effects of leguminous cover crops on maize grown on soils from northern Nigeria. J Plant Nutr Soil Sci 165:566–572

    Article  CAS  Google Scholar 

  • Li L, Sun JH, Zhang FS, Li XL, Yang SC, Rengel Z (2001) Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crop Res 71:123–137

    Article  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104:11192–11196. doi:10.1073/pnas.0704591104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malik MA, Khan KS, Marschner P, Ali S (2013) Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils. Biol Fertil Soils 49:415–425. doi:10.1007/s00374-012-0738-6

    Article  CAS  Google Scholar 

  • Maltais-Landry G, Scow K, Brennan E (2014) Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in California agricultural soils. Soil Biol Biochem 78:255–262. doi:10.1016/j.soilbio.2014.08.013

    Article  CAS  Google Scholar 

  • Mason S, McNeill A, McLaughlin MJ, Zhang H (2010) Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 337:243–258. doi:10.1007/s11104-010-0521-0

    Article  CAS  Google Scholar 

  • Nachimuthu G, Lockwood P, Guppy C, Kristiansen P (2009) Phosphorus uptake in faba bean, field pea, and corn cultivars from different sources: preliminary studies of two options for organic farmers. Crop Pasture Sci 60:183–189. doi:10.1071/cp08103

    Article  CAS  Google Scholar 

  • Nelson NO, Janke RR (2007) Phosphorus sources and management in organic production systems. Horttechnology 17:442–454

    CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2005) Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 271:175–187. doi:10.1007/S11104-004-2386-6

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2006) Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 281:109–120. doi:10.1007/S11104-005-3936-2

    Article  CAS  Google Scholar 

  • O’Halloran IP, Cade-Menun BJ (2007) Total and Organic Phosphorus. In: Carter MR, Gregorich EG (eds) Soil Sampling and Methods of Analysis. CRC Press, Boca Raton

    Google Scholar 

  • Pearse SJ (2011) Why does the musketeer approach to phosphorus acquisition from sparingly soluble forms fail: all for one, but not one for all? Plant Soil 348:81–83. doi:10.1007/s11104-011-0975-8

    Article  CAS  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139. doi:10.1007/s11104-006-9099-y

    Article  CAS  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190. doi:10.1111/J.1469-8137.2006.01897.X

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel B, Munns R, Atkin OK, Tardieu F, Pons TL (2012) The art of growing plants for experimental purposes: a practical guide for the plant biologist Review. Funct Plant Biol 39:821–838. doi:10.1071/fp12028

    Article  Google Scholar 

  • Qin X, Niklas KJ, Qi L, Xiong Y, Li F (2012) The effects of domestication on the scaling of below- vs. aboveground biomass in four selected wheat (Triticum; Poaceae) genotypes. Am J Bot 99:1112–1117. doi:10.3732/ajb.1100366

    Article  PubMed  Google Scholar 

  • Ramos ME, Benitez E, Garcia PA, Robles AB (2010) Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Appl Soil Ecol 44:6–14. doi:10.1016/j.apsoil.2009.08.005

    Article  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143. doi:10.1071/Cp07125

    Article  CAS  Google Scholar 

  • Richardson A, Lynch J, Ryan P, Delhaize E, Smith F, Smith S, Harvey P, Ryan M, Veneklaas E, Lambers H, Oberson A, Culvenor R, Simpson R (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156. doi:10.1007/s11104-011-0950-4

    Article  CAS  Google Scholar 

  • Ryan MH, Kirkegaard JA (2012) The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agric Ecosyst Environ 163:37–53. doi:10.1016/j.agee.2012.03.011

    Article  Google Scholar 

  • Suriyagoda L, De Costa WAJM, Lambers H (2014) Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant Soil 384:53–68. doi:10.1007/s11104-014-2049-1

    Article  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (2003) Organic phosphorus utilization by wheat plants under sterile conditions. Biol Fertil Soils 39:25–29. doi:10.1007/s00374-003-0671-9

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (2007) Characterization of Available P by Sequential Extraction. In: Carter MR, Gregorich EG (eds) Soil Sampling and Methods of Analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank S. Kolarik, T. Canonico, A. Lindstrom, L. Reji, R. Bergman, C. Turner and M. Patterson for lab assistance; T. Fukami and R. Vannette for technical assistance with UPLC; K. Peay and J. Talbot for technical assistance with enzyme analyses; Peter Vitousek, Emmanuel Frossard, three anonymous reviewers, and section editor Jim Barrow for comments.

Compliance with Ethical Standards

This research was partially funded by a graduate fellowship to G. Maltais-Landry from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and a Doctoral Dissertation Improvement Grant (DDIG) from the National Science Foundation (NSF). G. Maltais-Landry declares no conflict of interest and certifies that principles of ethical and professional conduct have been followed at all stages involved in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maltais-Landry.

Additional information

Responsible Editor: N. Jim Barrow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltais-Landry, G. Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant Soil 394, 139–154 (2015). https://doi.org/10.1007/s11104-015-2518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2518-1

Keywords

Navigation