Skip to main content
Log in

Why does the musketeer approach to phosphorus acquisition from sparingly soluble forms fail: All for one, but not one for all?

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

The Original Article was published on 14 July 2011

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hoffland E (1992) Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape. Plant Soil 140:279–289

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape I. Evaluation of the role of the nutrient uptake pattern. Plant Soil 113:155–160

    Article  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and hysiological traits. Ann Bot 98:693–713

    Article  PubMed  Google Scholar 

  • Li M, Shinano T, Tadano T (1997) Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci Plant Nutr 43:237–245

    CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 85:909–919

    Article  CAS  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray GR, Barber MDA, Lambers H (2006) Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing less carboxylates into the rhizosphere. New Phytol 169:515–524

    Article  PubMed  CAS  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190

    Article  PubMed  CAS  Google Scholar 

  • Pearse SJ, Venaklaas EJ, Cawthray G, Bolland MDA, Lambers H (2008) Rhizosphere processes do not explain variation in P acquisition from sparingly soluble forms among Lupinus albus accessions. Aust J Agric Res 59:616–623

    Article  CAS  Google Scholar 

  • Pierret A, Moran C, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980

    Article  PubMed  Google Scholar 

  • Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci Am 94:6547–6552

    Article  CAS  Google Scholar 

  • Sas L, Rengel Z, Tang C (2001) Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci 160:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ju Ahn S, Ryan PR, Delhaize E (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Vu DT, Armstrong RD, Sale PWG, Tang C (2010) Phosphorus availability for three crop species as a function of soil type and fertilizer history. Plant Soil 337:497–510

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang C, Guppy CN, Sale PWG (2010) Cotton, wheat and white lupin differ in phosphorus acquisition from sparingly soluble P sources. Environ Exp Bot 69:267–272

    Article  CAS  Google Scholar 

  • Wang X, Guppy CN, Watson L, Sale PWG, Tang C (2011) Availability of sparingly soluble phosphorus sources to cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) with different forms of nitrogen as evaluated by a 32P isotopic dilution technique. Plant Soil doi:10.1007/s11104-011-0901-0

  • Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Martinoia E (2006) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Yan F, Zorb C, Schubert S (2005) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus deficient conditions? Plant Cell Physiol 46:892–901

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart James Pearse.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearse, S.J. Why does the musketeer approach to phosphorus acquisition from sparingly soluble forms fail: All for one, but not one for all?. Plant Soil 348, 81–83 (2011). https://doi.org/10.1007/s11104-011-0975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0975-8

Keywords

Navigation