Skip to main content
Log in

Variations in aboveground vegetation structure along a nutrient availability gradient in the Brazilian pantanal

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Forest expansion into seasonally flooded (hyperseasonal) savanna of the Brazilian Pantanal has been occurring for decades. Our goal was to evaluate how ecosystem physiognomy varied across a nutrient availability gradient and if hyperseasonal savanna had adequate nutrient stocks to support forest expansion.

Methods

We quantified soil properties, aboveground ecosystem structure, and nutrient stocks of three savanna and three forest stands in the Pantanal of Mato Grosso, Brazil, and used correlation analysis to assess how aboveground vegetation structure varied across a soil nutrient availability gradient.

Results

Wood and foliage carbon storage and leaf area index were positively correlated with soil extractable phosphorus (P), calcium (Ca2+), and magnesium (Mg2+) concentrations but not soil organic matter or texture. Soil profiles indicated that vegetation enriched surface P and K+ availability but not Ca2+ and Mg2+. Savanna ecosystems had adequate K+, Ca2+, and Mg2+ to support gallery and riparian forests but not palm forest, while the savanna P stock was inadequate to support forest expansion.

Conclusions

Hyperseasonal savanna has adequate nutrients (except P) to support forest expansion. Forest trees likely invade P-deficient savanna by surviving in P-rich microsites. Over time, biotic enrichment of soil may accelerate forest expansion into P-poor savanna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbosa RI, Fearnside PM (2005) Above-ground biomass and the fate of carbon after burning in the savannas of roraima, Brazilian Amazonia. For Ecol Man 216:295–316

    Article  Google Scholar 

  • Bond WJ (2010) Do nutrient-poor soils inhibit development of forests? a nutrient stock analysis. Plant Soil 334:47–60

    Article  CAS  Google Scholar 

  • Breitsprecher A, Bethel JS (1990) Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71:1156–1164

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Greenway H (2010) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 9:1–19

    Google Scholar 

  • Couto EG, Chig LA, Nunes da Cunha C, Loureiro MF (2006) Estudo sobre o impacto do fogo na disponibilidade de nutrientes, no banco de sementes e na biota de solos da RPPN SESC Pantanal. Serviço Social do Comercio 2, Departamento Nacional, Rio de Janeiro, RJ, Brasil. pp. 56

  • Dalmagro HJ, Lobo FA, Vourlitis GL, Dalmolin ÂC, Antunes MZ Jr, Ortíz CER, Nogueira JS (2013) Photosynthetic parameters for two invasive tree species of the Brazilian pantanal in response to seasonal flooding. Photosynthetica 51:281–294

    Article  CAS  Google Scholar 

  • Dalmagro HJ, Lobo FA, Vourlitis GL, Dalmolin ÂC, Antunes MZ Jr, Ortíz CER, Nogueira JS (2014) The physiological light response of two tree species across a hydrologic gradient in Brazilian savanna (Cerrado). Photosynthetica 52:22–35

    Article  CAS  Google Scholar 

  • Dalmolin ÂC, Dalmagro HJ, Lobo FA, Antunes MZ Jr, Ortíz CER, Vourlitis GL (2012) Effects of flooding and shading on growth and gas exchange of Vochysia divergens (Vochysiaceae) an invasive species in the Brazilian Pantanal. Braz J Plant Physiol 24:75–84

    Article  CAS  Google Scholar 

  • de Castro EA, Kauffman JB (1998) Ecosystem structure in the Brazilian cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J Trop Ecol 14:263–283

    Article  Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo state, Brazil, 1962–2000. Edin J Bot 63:119–130

    Article  Google Scholar 

  • Eck TF, Holben BN, Slutsker I, Setzer A (2000) Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for boimass burning aerosols in Amazonia. J Geophys Res 103:31865–31878

    Article  Google Scholar 

  • Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341

    Article  Google Scholar 

  • Goldsmith FB, Harrison CM (1976) Description and analysis of vegetation methods in plant ecology. Halsted, New York

    Google Scholar 

  • Goodland RJ, Pollard R (1973) The Brazilian cerrado vegetation: A fertility gradient. Ecology 61:219–224

    Article  Google Scholar 

  • Grace J, Jose JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeo 33:387–400

    Article  Google Scholar 

  • Haase R (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Man 117:129–147

    Article  Google Scholar 

  • Hanan EJ, Ross MS (2010) Across-scale patterning of plant-soil–water interactions surrounding tree islands in southern everglades landscapes. Landscape Ecol 25:463–476

    Article  Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646–657

    Article  CAS  Google Scholar 

  • Hayes P, Turner BL, Lambers H, Laliberte E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410

    Article  CAS  Google Scholar 

  • Hoffmann WA, Orthen B, Kielse P, do Nascimento V (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17:720–726

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768

    Article  PubMed  Google Scholar 

  • Holdo RM, Mack MC, Arnold SG (2012) Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J Veg Sci 23:352–360

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeosciences 53:51–77

    Google Scholar 

  • Jordan CF, Herrera R (1981) Tropical rainforests: are nutrients really critical? Am Nat 117:167–180

    Article  CAS  Google Scholar 

  • Junk WJ, Nunes da Cunha C (2005) Pantanal: a large South American wetland at a crossroads. Ecol Eng 24:391–401

    Article  Google Scholar 

  • Junk WJ, Nunes da Cunha C (2012) Pasture clearing from invasive woody plants in the Pantanal: a tool for sustainable management or environmental destruction? Wetlands Ecol Manag 20:111–122

    Article  Google Scholar 

  • Junk WJ, Nunes da Cunha C, Wantzen KM, Petermann P, Strussmann C, Marques MI, Adis J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309

    Article  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J Ecol 82:519–531

    Article  Google Scholar 

  • Kellman M (1979) Soil enrichment by neotropical savanna trees. J Ecol 67:565–577

    Article  CAS  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona JM, Chambers JQ, Gascona C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Man 118:127–138

    Article  Google Scholar 

  • Lilienfein J, Wilcke W, Zimmermann R, Gerstberger P, Araujo GM, Zech W (2001) Nutrient storage in soil and biomass of native Brazilian cerrado. J Plant Nut Soil Sci 164:487–495

    Article  CAS  Google Scholar 

  • Lilienfein J, Wilcke W, Vilela L, Ayarza MA, Lima SC, Zech W (2003) Soil fertility under native cerrado and pasture in the Brazilian savanna. Soil Sci Soc Am J 67:1195–1205

    Article  CAS  Google Scholar 

  • Lloyd J, Bird MI, Vellen L, Miranda AC, Veenendaal EM, Djagbletey G, Miranda HS, Cook G, Farquhar GD (2008) Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Phys 28:451–468

    Article  Google Scholar 

  • Lopes AS, Cox FR (1977) Cerrado vegetation in Brazil: an edaphic gradient. Agron J 69:828–831

    Article  Google Scholar 

  • Lorenzi H (2002) Arvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arboreas do Brasil, Ed. Nova Odessa, Brazil, pp. 367

  • Malhi Y, Saatchi S, Girardin C, Aragão LEOC (2009) The production, storage, and flow of carbon in Amazon forests. Pages 355–372 in Keller M, Bustamante M, Gash J, Silva Dias P (eds) Amazonia and Global Change. Geophysical Monograph 186, American Geophysical Union, Washington, DC, USA.

  • McDonald LM, Evangelou VP, Chappell MA (2005) Cation exchange. In: Hillel D, Rosenzweig C, Powlson D, Scow K, Singer M, Sparks D (eds) Encyclopedia of soils in the environment, vol 1. Academic, San Diego, pp 180–188

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In Methods of soil analysis: Part 3. Chemical Methods. Soil Science Society of America Book Series No. 5, Soil Science Society of America, Inc., Madison, WI.

  • Nunes da Cunha C, Junk WJ (2001) Distribution of woody plants communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. Int J Ecol Env Sci 27:63–70

    Google Scholar 

  • Nunes da Cunha C, Junk WJ (2004) Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. Appl Veg Sci 7:103–110

    Google Scholar 

  • Nunes da Cunha CA, Junk WL (2009) Preliminary classification of habitats of the pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international wetland classification systems. In: Junk WJ, Da Silva CJ, da Cunha N, Wantzen KM (eds) The pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Moscow, pp 127–141

  • Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581

    Article  Google Scholar 

  • Ostertag R (2010) Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant Soil 334:85–98

    Article  CAS  Google Scholar 

  • Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299

    Article  PubMed  Google Scholar 

  • Parolin P, Waldhoff D, Piedade MTF (2010) Gas exchange and photosynthesis. In: Junk W, Piedade MTF, Wittmann F, Schoengart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology biodiversity and sustainable management. Ecological studies. Springer, Dordrecht, pp 195–214

    Google Scholar 

  • Pasquini SC, Santiago LS (2012) Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168:311–319

    Article  CAS  PubMed  Google Scholar 

  • Pott A, Pott VJ (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa, Agropecuaria, Centro de Pesquisa Agropecuaria do Pantanal, Corumba, MS, Brasil. pp. 319

  • Quesada CA, Lloyd J, Schwarz M, Baker TR, Phillips OL, Patiño S, Czimczik C, Hodnett MG, Herrera R, Arneth A, Lloyd J, Malhi Y, Dezzeo N, Luizão FJ, Santos AJB, Schmerler J, Arroyo L, Silveira M, Priante-Filho N, Jimenez EM, Paiva R, Vieira I, Neill DA, Silva N, Peñuela MC, Monteagudo A, Vasquez R, Prieto A, Rudas A, Almeida S, Higuchi N, Lezama AT, Lopez-Gonzalez G, Peacock J, Fyllas NM, Alvarez Davila E, Erwin T, di Fiore A, Chao KJ, Honorio E, Killeen T, Peña Cruz A, Pitman N, Nuñez Vargas P, Salomão R, Terborgh J, Ramirez H (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosci Disc 6:3993–4057

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. Pages 151–212 in Sano SM, Pedrosa de Almeida S, Ribeiro JF (eds), Cerrado Ecologia e Flora, Vol. 1. Emprapa Informacao Technologica, Ministerio da Agricultura, Pecuaria e Abastecimento, Brasilia, Districto Federal, Brasil.

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25

    Article  Google Scholar 

  • Robertson GP, Coleman DC, Bledsoe CS, Sollins P (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York

    Google Scholar 

  • Rossatto DR, Hoffmann WA, Franco AC (2009) Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary. Funct Ecol 23:689–698

    Article  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Vegetation-soil relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Saha AK, O’Reilly Sternberg LS, Ross MS, Miralles-Wilhelm F (2010) Water source utilization and foliar nutrient status differs between upland and flooded plant communities in wetland tree islands. Wetl Ecol Manag. doi:10.1007/s11273-010-9175-1

    Google Scholar 

  • Sano SM, Pedrosa de Almeida S, Ribeiro JF (2008) Cerrado Ecologia e Flora, Vol. 2. Emprapa Informacao Technologica, Ministerio da Agricultura, Pecuaria e Abastecimento, Brasilia, Districto Federal, Brasil. pp. 1279

  • Santos AJB, Silva GTDA, Miranda HS, Miranda AC, Lloyd J (2003) Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Funct Ecol 17:711–719

    Article  Google Scholar 

  • Santos SA, Nunes da Cunha C, Tomás W, Pinto de Abreu UG, Arieira J (2006) Plantas invasoras no Pantanal: Como entender o problema e soluções de manejo por meio de diagnóstico participativo. Boletim de Pesquisa e Desenvolvimento 66, Embrapa Pantanal, Corumba, MS, Brasil.

  • Schöngart J, Wittmann F, Worbes M (2010) Biomass and NPP of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management. Springer, Heidelberg, pp 347–388

    Chapter  Google Scholar 

  • Schöngart J, Arieira J, Felfili Fortes C, de Arruda EC, Nunes da Cunha CN (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421

    Article  Google Scholar 

  • Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    Article  PubMed Central  PubMed  Google Scholar 

  • Silva LCR, Sternberg LSL, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Glob Chang Biol 14:2108–2118

    Article  Google Scholar 

  • Silva LCR, Haridasan M, Sternberg LSL, Franco AC, Hoffmann WA (2010) Not all forests are expanding over central Brazilian savannas. Plant Soil 333:431–442

    Article  CAS  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: The principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and Co, New York

  • Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical. Glob Change Biol 14:109–124

    Google Scholar 

  • Viani RAG, Rodrigues RR, Dawson TE, Oliveira RS (2011) Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil 349:341–353

    Article  CAS  Google Scholar 

  • Vourlitis GL, da Rocha HR (2011) Flux dynamics in the Cerrado and Cerrado-Forest Transition of Brazil. In Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape to Global Scales. CRC, Inc., Boca Raton, FL, USA.

  • Vourlitis GL, Lobo FA, Biudes MS, Ortíz CER, Nogueira JS (2011) Spatial variations in soil chemistry and organic matter content across a Vochysia divergens invasion front in the Brazilian Pantanal. Soil Sci Soc Am J 75:1554–1561

    Article  CAS  Google Scholar 

  • Vourlitis GL, Lobo FA, Lawrence S, Lucena IC, Borges OP Jr, Dalmagro HJ, Ortiz CER, Nogueira JS (2013) Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in southern Mato Grosso. Soil Sci Soc Am J 77:1370–1379

    Article  CAS  Google Scholar 

  • Vourlitis GL, Lobo FA, Lawrence S, Holt K, Zappia A, Pinto OB Jr, Nogueira JS (2014) Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecol 215:963–975. doi:10.1007/s11258-014-0348-5

    Article  Google Scholar 

  • Wantzen KM, Couto EG, Mund EE, Amorim RSS, Siqueira A, Tielbörger K, Seifan M (2012) Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Ag Ecosys Env 151:70–79

    Article  CAS  Google Scholar 

  • Wigley BJ, Coetsee C, Hartshorn AS, Bond WJ (2013) What do ecologists miss by not digging deep enough? Insights and methodological guidelines for assessing soil fertility status in ecological studies. Acta Oecol 51:17–27

    Article  Google Scholar 

  • Wood TE, Lawrence D, Clark DA, Chazdon RL (2009) Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109–121

    Article  PubMed  Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central amazon floodplains. Ecology of a Pulsing System. Springer-Verlag, USA, pp 223–266

    Chapter  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a National Science Foundation-Office of International Science and Engineering (NSF-OISE) grant to GLV and a CNPq Science Without Borders grant to FAL, JSN, and GLV. Additional logistic support provided by the Universidade Federal de Mato Grosso, Programa de Pós-Graduação em Física Ambiental (UFMT-PGFA) is gratefully appreciated. The authors thank SESC-Pantanal for access to the field sites and logistical support, all of the undergraduate and graduate students who helped in the collection of field samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L Vourlitis.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vourlitis, G.L., de Almeida Lobo, F., Pinto, O.B. et al. Variations in aboveground vegetation structure along a nutrient availability gradient in the Brazilian pantanal. Plant Soil 389, 307–321 (2015). https://doi.org/10.1007/s11104-014-2364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2364-6

Keywords

Navigation