Skip to main content
Log in

Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8–196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees ≥10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0–20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 ± 13 stems ha−1, basal area 39.6 ± 1.4 m2 ha−1 and aboveground biomass 518 ± 28 Mg ha−1 (mean ± SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 ± 25 Mg ha−1. Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R Pearson = 0.368–0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60–90 cm dbh were negatively related to these factors. Soil fertility thus had a significant effect on both total aboveground biomass and its distribution among size classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Aerts R, Chapin FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Google Scholar 

  • Anderson JAR (1964) The structure and development of the peat swamps of Sarawak and Brunei. J Trop Geogr 18:7–16

    Google Scholar 

  • Ashton PS (1982) Dipterocarpaceae. Flora Malaesiana I 9:237–552

    Google Scholar 

  • Ashton PS, Hall P (1992) Comparisons of structure among mixed dipterocarp forests of north-western Borneo. J Ecol 60:305–324

    Google Scholar 

  • Baillie IC, Ashton PS, Court MN, Anderson JAR, Fitzpatrick EA, Tinsley J (1987) Site characteristics and the distribution of tree species in mixed dipterocarp forests on tertiary sediments in Central Sarawak, Malaysia. J Trop Ecol 3:201–220

    Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva JNM, Martinez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562

    Article  Google Scholar 

  • Berendse F (1994) Competition between plant populations at low and high nutrient supplies. Oikos 71:253–260

    Article  Google Scholar 

  • Bowman R (1990) A rapid method to determine total phosphorus in soils. J Soil Sci Soc Am 52:1301–1304

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. UN FAO Forestry Paper 134. Food and Agriculture Organization, Rome

    Google Scholar 

  • Brown S, Iverson LR, Prasad A, Liu D (1993) Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto Int 4:45–59

    Article  Google Scholar 

  • Brown S, Iverson LR, Prasad A (2001) Geographical distribution of biomass carbon in tropical Southeast Asian forests: a database. Publication Number 4879. Environmental Sciences Division, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

  • Brunig EF (1974) Ecological studies in the kerangas forest of Sarawak and Brunei. Borneo Literature Bureau, Kuching

    Google Scholar 

  • Cannon C, Leighton M (2004) Tree species distributions across five habitats in a Bornean rainforest. J Veg Sci 15:257–266

    Article  Google Scholar 

  • Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252

    Article  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond B 35:409–420

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198

    Article  Google Scholar 

  • Clark D, Clark D, Read JM (1999) Edaphic factors and the landscape-scale distribution of rain forest trees. Ecology 80:2662–2675

    Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76:222–235

    Article  Google Scholar 

  • Curran LM (1994) The ecology and evolution of mast-fruiting in Bornean Diptercarpaceae: a general ectomycorrhizal theory. PhD thesis, Princeton University, Princeton, MA

  • Curran LM, Leighton M (2000) Vertebrate responses to spatio-temporal variation in seed production by mast-fruiting Bornean Dipterocarpaceae. Ecol Monogr 70:101–128

    Google Scholar 

  • Curran LM, Caniago I, Paoli G, Astiani D, Kusneti M, Leighton M, Nirarita CE, Haeruman H (1999) Impact of El Nino and logging on canopy tree recruitment in Borneo. Science 286:2184–2188

    Article  PubMed  CAS  Google Scholar 

  • Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono YM, Siregar P, Caniago I, Kasischke E (2004) Lowland forest loss in protected areas of Indonesian Borneo. Science 303:1000–1003

    Article  PubMed  CAS  Google Scholar 

  • Dennis RA, Colfer CP (2006) Impacts of land use and fire on the loss and degradation of lowland forest in 1983–2000 in East Kutai District, East Kalimantan, Indonesia. Singapore J Trop Geogr 27:30–48

    Article  Google Scholar 

  • De Walt SJ, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • Duque AJ, Duivenvoorden JF, Cavelier J, Sanchez M, Polania C, Leon A (2005) Ferns and Melastomataceae as indicators of vascular plant composition in rain forests of Colombian Amazonia. Plant Ecol 178:1–13

    Article  Google Scholar 

  • Fuller DO, Fulk M (2001) Burned area in Kalimantan, Indonesia mapped with NOAA-AVHRR and Landsat TM imagery. Int J Remote Sens 22: 691–697

    Article  Google Scholar 

  • Hart TB, Hart JA, Murphy PG (1989) Mono-dominant and species-rich forests of the humid tropics: causes for their occurrence. Am Nat 133:613–633

    Article  Google Scholar 

  • King DA, Davies SJ, Supardi MNN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453

    Article  Google Scholar 

  • Kitayama K (1992) An altitudinal transect study of the vegetation of Mount Kinabalu, Borneo. Vegetatio 102:149–171

    Article  Google Scholar 

  • Kitayama K, Aiba S (2002) Ecosystem structure and productivity of tropical rain forest along altitudinal gradients with contrasting soil phosphorus pools and Mount Kinabalu, Borneo. J Ecol 90:37–51

    Article  Google Scholar 

  • Klinge H, Herrera R (1983) Phytomass structure of Amazonian caatinga ecosystems in Southern Venezuela 1. Tall Amazon Caatinga. Vegetatio 53:65–84

    Article  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazonian forest biomass: A landscape-scale study. For Ecol Manag 118:127–138

    Article  Google Scholar 

  • Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesadas CA, Salamao R, Silva JNM, Lezama AT, Terborgh J, Vasquez R, Vinceti B (2006) The regional variation in above-ground live biomass in old-growth Amazonian forests. Glob Chang Biol 12:1107–1138

    Article  Google Scholar 

  • McMorrow J, Talip MA (2001) Decline of forest area in Sabah, Malaysia: relationship to state policies, land code and land capability. Glob Environ Chang 11:217–230

    Article  Google Scholar 

  • Mirmanto E, Proctor J, Green J, Nagy J, Suriantata L (1999) Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos Trans R Soc Lond B 354:1825–1829

    Article  CAS  Google Scholar 

  • Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Arai E, Espirito-Santo FD, Freitas R, Morisette J (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc Natl Acad Sci USA 103:14637–14641

    Article  PubMed  CAS  Google Scholar 

  • Nepstad D, Lefebvre P, Da Silva UL, Schlesinger P, Solorzano L, Moutinho P, Ray DJ, Benito G (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Chang Biol 10:704–717

    Article  Google Scholar 

  • Oey DS (1990) Berat jenis dari jenis-jenis kayu berat Indonesia dan pengertian beratnya kayu untuk keperluan praktek. Departemen Kehutanan Pengumuman nr. 13, Pusat dan Penelitian Pengembangan Hasil Hutan, Bogor, Indonesia

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept Agric Circ 939

  • Palm CA, van Noordwijk M, Woomer PL, Algre JC, Arévalo L, Castilla CE, Cordeiro DC, Hairiah K, Kotto-Same J, Moukam A, Parton WJ, Ricse A, Rodrigues V, Sitompul SM (2005) Carbon losses and sequestration after land use change in the humid tropics. In: Palm CA, Vosti SA, Sanchez PA, Ericksen PJ (eds) Slash-and-burn agriculture: the search for alternatives. Columbia University Press, New York, pp 41–63

  • Paoli GD (2006) Divergent leaf traits among congeneric rain forest trees with contrasting habitat distributions. J Trop Ecol 22:397–408

    Article  Google Scholar 

  • Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in lowland tropical rain forest of southwestern Borneo. Ecosystems 10:503–518

    Google Scholar 

  • Paoli GD, Curran LM, Zak DR (2005) Phosphorus efficiency of aboveground productivity in Bornean rain forest: evidence against the unimodal efficiency hypothesis. Ecology 86:1548–1561

    Article  Google Scholar 

  • Paoli GD, Curran LM, Zak DR (2006) Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. J Ecol 94:157–170

    Article  CAS  Google Scholar 

  • Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MC, Sanchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775

    Article  Google Scholar 

  • Potts MD, Ashton PS, Kaufman LS, Plotkin JB (2002) Habitat patterns in tropical rain forests: a comparison of 105 plots in northwest Borneo. Ecology 83:2782–2797

    Google Scholar 

  • Proctor J (1995) Rainforests and their soils. In: Primack RB, Lovejoy TE (eds) Ecology, conservation and management of Southeast Asian rainforests. Yale University Press, New Haven, pp 87–104

    Google Scholar 

  • Proctor J, Anderson JM, Chai P, Vallack HW (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. J Ecol 71:237–260

    Article  Google Scholar 

  • Proctor J, Lee YF, Langley AM, Munro WRC, Nelson T (1988) Ecological Studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics. J Ecol 76:320–340

    Article  Google Scholar 

  • Regional Physical Planning Program for Transmigration – RePPProT (1986/1987) Kalimantan, Borneo

  • Richards PW (1952) The tropical rain forest. Cambridge University Press, Cambridge

    Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547–560

    Article  Google Scholar 

  • Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889

    Article  CAS  Google Scholar 

  • Saatchi S, Houghton RA, Avala R, Yu Y, Soares JV (2007) Distribution of aboveground live biomass in the Amazon basin. Glob Chang Biol 13:816–837

    Google Scholar 

  • Schurr EAG (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165–1170

    Article  Google Scholar 

  • Siegert F, Rueker G, Hinrichs A, Hoffman AA (2001) Increased damage from forest fires in logged forests during drought caused by El Nino. Nature 414:437–440

    Article  PubMed  CAS  Google Scholar 

  • Slik JWF (2006) Estimation of species-specific wood density from the genus average in Indonesian trees. J Trop Ecol 22:481–482

    Article  Google Scholar 

  • Soares-Filho B, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523

    Article  PubMed  CAS  Google Scholar 

  • Sollins M (1998) Factors influencing species composition in tropical lowland rain forests: does soil matter? Ecology 79:23–30

    Article  Google Scholar 

  • Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a Bornean rain forest. Ecology 86:3048–3062

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto H, Poulsen AD, Ruokolainen K, Moran RC, Quintana C, Celi J, Canas G (2003) Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecol Appl 13:352–371

    Article  Google Scholar 

  • van der Werf G, Randerson JT, Collatz GJ, Giglio L, Kasibhatia PS, Arellano AF Jr, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Nina period. Science 303:73–76

    Article  PubMed  CAS  Google Scholar 

  • van Noordwick M, Hairah K (1986) Mycorrhizal infection in relation to soil pH and soil phosphorus content in a forest of northern Sumatra. Plant Soil 96:299–302

    Article  Google Scholar 

  • van Schaik CP, Mirmanto E (1985) Spatial variation in the structure and litterfall of a Sumatran rain forest. Biotropica 17:196–205

    Article  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forests. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Whitmore TC (1984) Tropical rain forests of the Far East, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Indonesian Institute of Sciences (LIPI) and the Department of Forest Protection and Nature Conservation (PHKA) for granting permission to conduct research in Indonesia. The research presented in this paper complies with the current laws of both Indonesia and the USA. We thank the Center for Research in Biology (PPB), for sponsorship and logistical support, and the students and faculty of Universitas Tanjungpura, for participating as our research counterparts. We thank C. Cannon and M. Leighton for use of the Gunung Palung floristic dataset to estimate specific wood densities across substrates, and Farizal, Hon, Tang and Morni for vital assistance in the field. A. Budiman, Sugarjito, N. Paliama and M. Sinaga provided administrative support. Financial support for Gary D. Paoli from the Fulbright Indonesia Program and the University of Michigan; Lisa M. Curran from NASA Earth Science Program (NAG 511335 & 511161), the University of Michigan, the Yale School of Forestry and Environmental Studies and the Santa Fe Institute; and J. W. F. Slik from NWO-WOTRO (project grant nr.W84–573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Paoli.

Additional information

Communicated by Detlef Schulze.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (XLS 309 kb)

ESM 2 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paoli, G.D., Curran, L.M. & Slik, J.W.F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155, 287–299 (2008). https://doi.org/10.1007/s00442-007-0906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0906-9

Keywords

Navigation