Skip to main content
Log in

Improved heat stress tolerance of wheat seedlings by bacterial seed treatment

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

To investigate if rhizosphere bacteria can improve heat tolerance of wheat.

Methods

Wheat (Triticum aestivum) seeds of the cultivars Olivin and Sids1 were treated with Bacillus amyloliquefaciens UCMB5113 or Azospirillum brasilense NO40 and young seedlings tested for management of short term heat stress.

Results

Bacterial treatment improved heat stress management of wheat. Olivin showed higher heat tolerance than Sids1 both with non-inoculated and inoculated seeds. Heat increased transcript levels of several stress related genes in the leaves, while expression was lower in inoculated plants but elevated compared with the control. Enzymes of the ascorbate-glutathione redox cycle were activated in leaves after heat challenge but showed a lower response in inoculated plants. Metabolite profiling distinguished different treatments dependent on analysis technique with respect to primary and secondary metabolites. Analysis of some plant stress regulatory genes showed that bacterial treatment increased transcript levels while effects of heat treatment varied.

Conclusions

The improvement of heat tolerance by bacteria seems associated with reduced generation of reactive oxygen species (and consequently less cell damage), small changes in the metabolome while preactivation of certain heat shock transcription factors seems important. Seed inoculation with beneficial bacteria seems a promising strategy to improve heat tolerance of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

DHAR:

Dehydroascorbate reductase

GR:

Glutathione reductase

HSF:

Heat shock transcription factors

HSP:

Heat shock protein

MDHAR:

Mono-dehydroascorbate reductase

PCA:

Principal component analysis

PGPR:

Plant growth-promoting rhizobacteria

ROS:

Reactive oxygen species

SAM:

S-adenosylmethionine

SAMS:

S-adenosylmethionine synthetase

References

  • Abou-Deif MH, Mohamed FI (2007) Effect of heat stress on chromosomes and protein patterns in six hexaploid wheat varieties. Res J Cell Mol Biol 1:42–49

    CAS  Google Scholar 

  • Anderson M, Habiger J (2012) Characterization and identification of productivity-associated Rhizobacteria in wheat. Appl Environ Microbiol 78:4434–4446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avelange-Macherel MH, Ly-Vu B, Delaunay J, Richomme P, Leprince O (2006) NMR metabolite profiling analysis reveals changes in phospholipid metabolism associated with the re-establishment of desiccation tolerance upon osmotic stress in germinated radicles of cucumber. Plant Cell Environ 29:471–482

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bhuiyan NH, Liu W, Liu G, Selvaraj G, Wei Y, King J (2007) Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol 64:305–318

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang EY, Kim MS, Yoo SJ, Im YJ, Kim YC, Yang KY, Kim KY, Kim KS, Choi YS, Cho BH (2010) Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis thaliana. Botany 88:452–461

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danielsson J, Reva O, Meijer J (2007) Protection of oilseed rape (Brassica napus) towards fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens. Microb Ecol 54:134–140

    Article  PubMed  Google Scholar 

  • Dowd SR, Bier ME, Patton-Vogt JL (2001) Turnover of phosphatidylcholine in Saccharomyces cerevisiae. The role of the CDP-choline pathway. J Biol Chem 276:3756–3763

    Article  CAS  PubMed  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson AD, Roje S (2001) One carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Ikeda M, Ohme-Takagi M (2009) A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 50:970–975

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kiewietdejonge A, Pitts M, Cabuhat L, Sherman C, Kladwang W, Miramontes G, Floresvillar J, Chan J, Ramirez RM (2006) Hypersaline stress induces the turnover of phosphatidylcholine and results in the synthesis of the renal osmoprotectant glycerophosphocholine in Saccharomyces cerevisiae. FEMS Yeast Res 6:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2:152–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 Heat Shock Factors in diverse abiotic stress responses and development. Plant Physiol 163:276–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Anal Biochem 383:320–322

    Article  CAS  PubMed  Google Scholar 

  • Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • O’Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant 6:261–274

    Article  PubMed  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlick M, Stransky H, Schöffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sarosh BR, Danielsson J, Meijer J (2009) Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea. Plant Mol Biol 70:31–45

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14:155–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Swindell WR, Huebner M, Weber A (2007) Transcriptional profiling of Arabidopsis heat shock proteins reveals overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed Central  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:1–7

    Article  Google Scholar 

  • van der Rest B, Boisson A, Gout E, Bligny R, Douce R (2002) Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol 130:244–255

    Article  PubMed Central  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Ward J, Harris C, Lewis J, Beale M (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949–957

    Article  CAS  PubMed  Google Scholar 

  • Ward JL, Baker JM, Miller SJ, Deborde C, Maucourt M, Biais B, Rolin D, Moing A, Moco S, Vervoort J, Lommen A, Schäfer H, Humpfer E, Beale MH (2010) An inter-laboratory comparison demonstrates that [H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics 6:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zablocki K, Miller SP, Garcia-Perez A, Burg MB (1991) Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc Natl Acad Sci U S A 88:7820–7824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the metabolomic analysis carried out by Dr. Jane Ward and colleagues at the National Centre for Plant and Microbial Metabolomics in Rothamstead, UK. The A. brasilense NO40 strain was kindly supplied by Prof. Nabil Omar, Soils, Water and Environment Research Institute, Egypt. We also wish to thank Prof. Wedad Kasim and Prof. M. E. Osman, Tanta University, Egypt for their support. These studies were supported by FORMAS and SI. Funding for plant growth facilities were provided by KFI-VR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Meijer.

Additional information

Responsible Editor: Peter A.H. Bakker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 321 kb)

Figure S2

(DOCX 28 kb)

Figure S3

(DOCX 28 kb)

Figure S4

(DOCX 105 kb)

Figure S5

(DOCX 19 kb)

Table S1

(DOCX 16 kb)

Table S2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd El-Daim, I.A., Bejai, S. & Meijer, J. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379, 337–350 (2014). https://doi.org/10.1007/s11104-014-2063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2063-3

Keywords

Navigation