Skip to main content
Log in

Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The selection of tree characteristics is critical for the outcome of the tree effects on soil fertility in silvopastoral pastures. This study aims to quantify the effects of trees on soil nutrient and C stocks, as well as assessing differences on the effects between legume (Albizia saman; Enterolobium cyclocarpum) and non-legume tree species (Tabebuia rosea; Guazuma ulmifolia).

Methods

In Central Nicaragua, soil was sampled (0–10 cm deep) in paired plots, under both a canopy and in open grassland, in 12 sites per tree species and analysed for organic C, total N stocks, available P and extractable K+, Ca2+ and Mg2+. To assess the effects of herbaceous composition and cattle to soil proprieties, we recorded the cover of plant groups and assessed the mass of dung in each plot.

Results

Soil organic C and N, available P and extractable K+ and Ca2+ were higher under the tree canopy than under paired open grassland. The basal area of trees was positively related with the canopy effect on soil variables, thus suggesting that the age or sizes of the trees are relevant factors associated with the content of soil C and nutrients. No specific effects related to the legume species group were detected.

Conclusions

Our results indicate that in fertile seasonally dry subtropical pastures, scattered trees have an overall effect on soil fertility, and that the magnitude of the effect depends more on the tree characteristics (i.e. basal area, crown area) than on whether the species is a legume or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfaia SS, Ribeiro GA, Nobre AD, Luizao RC, Luizao FJ (2004) Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agr Ecosyst Environ 102:409–414

    Article  Google Scholar 

  • Andrade H, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11–22

    Article  CAS  Google Scholar 

  • Belsky AJ, Mwonga SM, Duxbury JM (1993) Effects of widely spaced trees and livestock grazing on understory environments in tropical savannas. Agrofor Syst 24:1–20

    Article  Google Scholar 

  • Campo J, Jaramillo VJ, Maass JM (1998) Pulses of soil phosphorus availability in a Mexican tropical dry forest: effects of seasonality and level of wetting. Oecologia 115:167–172

    Article  Google Scholar 

  • Campo J, Maass JM, Jaramillo VJ, Martínez-Yrízar A (2000) Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem. Biogeochem 49:21–36

    Article  CAS  Google Scholar 

  • Campo J, Maass JM, Jaramillo VJ, Martínez-Yrízar A, Sarukhán J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochem 53:161–179

    Article  CAS  Google Scholar 

  • Casals P, Gimeno C, Carrara A, Lopez-Sangil L, Sanz MJ (2009) Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biol Biochem 41:1915–1922

    Article  CAS  Google Scholar 

  • Cordero J, Boshier DH (eds) (2003) Árboles de Centroamérica: un manual para extensionistas. Oxford Forestry Institute/CATIE, Turrialba

    Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JAL, Read J, Reich P, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton Univ. Press, Princeton

    Google Scholar 

  • Esquivel MJ, Harvey C, Finegan B, Casanoves F, Skarpe C (2008) Effects of pasture management on the natural regeneration of neotropical trees. Appl Ecol 45:371–380

    Article  Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework from predicting multiple plant effects on ecosystem processes. Ann Rev Ecol Syst 34:455–485

    Article  Google Scholar 

  • Galicia L, García-Oliva F (2004) The effects of C, N and P additions on soil microbial activity under two remnant tree species in a tropical seasonal pasture. Appl Soil Ecol 26:31–39

    Article  Google Scholar 

  • Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrient in a Mediterranean Dehesa. Pedobiologia 47:117–125

    Article  CAS  Google Scholar 

  • García-Oliva F, Sveshtarova B, Oliva M (2003) Seasonal effects on soil organic carbon dynamics in a tropical deciduous forest ecosystem in Western Mexico. J Trop Ecol 19:179–188

    Google Scholar 

  • Hanson PJ, Lindberg SE (1991) Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmos Environ 25:1615–1634

    Article  Google Scholar 

  • Harvey CA, Haber WA (1999) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforest Syst 44:37–68

    Article  Google Scholar 

  • Harvey CA, Villanueva C, Villacís J, Chacón M, Muñoz D, López M, Ibrahim M, Taylor R, Martínez JL, Navas A, Sáenz J, Sánchez D, Medina A, Vílchez S, Hernández B, Pérez A, Ruíz F, López F, Lang I, Kunth S, Sinclair FL (2005) Contribution of live fences to the ecological integrity of agricultural landscapes in Central America. Agric Ecosyst Environ 111:200–230

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389

    Article  Google Scholar 

  • Keeney DR (1982) Nitrogen. Availability indices. In: ASA-SSSA (ed) Methods of soil analysis, Part 2. Chemical and Microbial Properties, Madison, pp 711–722

    Google Scholar 

  • Kumar BM (2008) Litter dynamics in plantation and agroforestry systems. In: Batish DR, Kohli RK, Singh HP, Jose S (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, pp 181–216

    Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, Bartels JM, Bigham JM (eds) Methods of soil analysis. Part 3. Chemical Methods, Madison, pp 869–919

    Google Scholar 

  • Lax A, Roig A, Costa F (1986) A method for determining the cation-exchange capacity of organic materials. Plant Soil 94:349–355

    Article  Google Scholar 

  • Luizão FJ, Proctor J, Thompson J, Luizão RCC, Marrs RH, Scott DA, Viana V (1998) Rain forest on Maraca Island, Roraima, Brazil: soil and litter process response to artificial gaps. Forest Ecol Manage 102:291–303

    Article  Google Scholar 

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures—Implication for conservation. Biol Conserv 132:311–321

    Article  Google Scholar 

  • McKey D (1994) Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in Legume Systematics 5: The Nitrogen Factor. Royal Botanic Gardens, Kew, pp 211–228

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Comm Soil Sci Plant An 15:1409–1416

    Article  CAS  Google Scholar 

  • Mordelet P, Abbadie L, Menaut JC (1993) Effects of tree clumps on soil characteristics in a humid savannah of West Africa (Lamto, Cote d’Ivoire). Plant Soil 153:103–111

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Ospina S (2011) Linking plant strategies and ecosystem function: an assessment of the contribution of biodiversity to Neotropical grassland productivity. Dissertation, Tropical Agriculture Research and Higher Education Centre (CATIE) and Bangor University

  • Ospina S, Rusch GM, Pezo DA, Casanoves F, Sinclair FL (2012) More stable productivity of semi natural grasslands than sown pastures in a seasonally dry climate. PLoS ONE 7(5):e35555. doi:10.1371/journal.pone.0035555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palm CA, Sánchez PA (1991) Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol Biochem 23:83–88

    Article  CAS  Google Scholar 

  • Powers RF (1980) Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Sci Soc Am J 44:1314–1320

    Article  Google Scholar 

  • Reich JA, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology letters 8:811–818

    Article  Google Scholar 

  • Reis GL, Quintão Lana ÂM, Martins Maurício R, Quintão Lana RM, Matta Machado R, Borges I, Quinzeiro Neto T (2010) Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant Soil 329:185–193

    Article  CAS  Google Scholar 

  • Rhoades CC (1997) Single-tree influences on soil properties in agro-forestry: lessons from natural forest and savanna ecosystems. Agroforest Syst 35:71–94

    Article  Google Scholar 

  • Sáenz J, Villatro F, Ibrahim M (2006) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48

    Google Scholar 

  • Sánchez Merlos D, Harvey CA, Grijalva A, Medina A, Vílchez S, Hernández B (2005) Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Rev Biol Trop 53:387–414

    Google Scholar 

  • Sandoval I (2006) Producción de hojarasca y reciclaje de nutrientes de dos especies arbóreas y dos gramíneas en pasturas de Muy Muy, Nicaragua. Master of Science, CATIE, Turrialba

    Google Scholar 

  • Skarpe C (1991) Spatial patterns and dynamics of woody vegetation in an arid Savanna. J Veg Sci 2:565–572

    Article  Google Scholar 

  • Soon YK, Abboud S (1991) A comparison of some methods for soil organic carbon determination. Commun Soil Sci Plant Anal 22:943–954

    Article  CAS  Google Scholar 

  • Souza de Abreu MH (2002) Contribution of trees to the control of heat stress in dairy cows and the financial viability of livestock farms in the humid tropics. Ph.D. Thesis. Turrialba, Costa Rica, CATIE

  • Stevens WD, Ulloa UC, Pool A, Montiel OM, Arbaláez AL, Cuatia DM (eds) (2001) Flora de Nicaragua, Volume 1–3. Monographs in systematic botany from the Missouri Botanical Garden 85:1–965. Missouri Botanical Garden Press, Saint Louis, Missouri

  • Toledo-Aceves T, García-Oliva F (2008) Effects of forest-pasture edge on C, N and P associated with Caesalpinia eriostachys, a dominant tree species in a tropical decidious forest in Mexico. Ecol Res 23:271–280

    Article  CAS  Google Scholar 

  • Vetaas OR (1992) Micro-site effects of trees and shrubs in dry Savannas. J Veg Sci 3:337–344

    Article  Google Scholar 

  • Waring SA, Bremner JM (1964) Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the SILPAS project (funded by the Research Council of Norway, programme LAND, grant no. 184065/S30). We wish to thank the farmers in Muy Muy and Matiguás who kindly facilitated access to the study sites, as well as Hamilton Núñez, Nestor Pineda and Amilcar Aguilar (CATIE, Nicaragua) for their technical assistance in the field. Andreas Nieuwenhuyse (CATIE), Pere Rovira, Joan Romanyà and Noelia Arco (University of Barcelona) helped with the laboratory analysis and interpretation of the results. The first author (PC) is financially supported by a Ramón y Cajal Contract (Ministerio de Economía y Competitividad, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Casals.

Additional information

Responsible Editor: Per Ambus.

Appendices

Appendix A

Table 5 Tree and site characteristics per each individual sampled species

Appendix B

Table 6 Soil parameters differences between open grassland and under tree in the four tree species; mean (SE (n = 12). The significance from the Repeated Measures GLM was indicated (p-values <0.1 in bold) for the within-subject factor (Canopy) and their interactions with the covariable Basal area of the trees (Canopy × BA) and the functional group (Canopy × FG) and the species nested within functional group (Canopy × Sp(FG)) as between-subject factors. For each species, the significance of the differences of soil variables between under tree and under grassland plots from the paired t-student test was indicated (p-value)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casals, P., Romero, J., Rusch, G.M. et al. Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant Soil 374, 643–659 (2014). https://doi.org/10.1007/s11104-013-1884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1884-9

Keywords

Navigation